IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222016929.html
   My bibliography  Save this article

Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance

Author

Listed:
  • Zhou, Anhua
  • Xin, Ling
  • Li, Jun

Abstract

All countries are actively taking measures to address carbon neutrality. As a policy measure for China to respond to climate change, the carbon market is necessary and significant for assessing its impact on energy and the environment. This study uses data from 30 provinces in China from 2000 to 2017 and employs a difference-in-differences model to estimate the impact of the carbon market on energy and environmental performance. The empirical results show that the carbon market has significantly improved energy and environmental performance, as shown by a 14.14% reduction in energy intensity and an increase in carbon emission efficiency by 4.21%; a series of robustness test results show that the carbon market only has long-term stability characteristics in reducing energy intensity, but is unstable in improving emission efficiency; market reform and technological innovation have played a significant intermediary role in the impact of the carbon market on energy and environmental performance; and the carbon market has significant heterogeneity effects; only Beijing, Chongqing, and Hubei have significant energy intensity reduction effects. Finally, the results revealed that the carbon market is beneficial for improving energy and environmental performance, which provides a universal reference for countries worldwide to implement carbon emission reduction policies.

Suggested Citation

  • Zhou, Anhua & Xin, Ling & Li, Jun, 2022. "Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016929
    DOI: 10.1016/j.energy.2022.124789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Caputo, Michael R., 2014. "Comparative statics of a monopolistic firm facing price-cap and command-and-control environmental regulations," Energy Economics, Elsevier, vol. 46(C), pages 464-471.
    3. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    4. Wu, Peng & Wang, Yiqing & Chiu, Yung-ho & Li, Ying & Lin, Tai-Yu, 2019. "Production efficiency and geographical location of Chinese coal enterprises - undesirable EBM DEA," Resources Policy, Elsevier, vol. 64(C).
    5. Matthew A. Cole & Robert J.R. Elliott & Jing Zhang, 2011. "Growth, Foreign Direct Investment, And The Environment: Evidence From Chinese Cities," Journal of Regional Science, Wiley Blackwell, vol. 51(1), pages 121-138, February.
    6. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. He, Jie, 2006. "Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces," Ecological Economics, Elsevier, vol. 60(1), pages 228-245, November.
    8. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    9. Michael R. Caputo & Dmitriy Popov, 2014. "Comparative Statics Of A Monopolistic Firm Facing Rate-Of-Return And Command-And-Control Pollution Constraints," Bulletin of Economic Research, Wiley Blackwell, vol. 66(S1), pages 17-35, December.
    10. Yanni Yu & Weijie Zhang & Ning Zhang, 2018. "The Potential Gains from Carbon Emissions Trading in China’s Industrial Sectors," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1175-1194, December.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Zhu, Bangzhu & Zhang, Mengfan & Huang, Liqing & Wang, Ping & Su, Bin & Wei, Yi-Ming, 2020. "Exploring the effect of carbon trading mechanism on China's green development efficiency: A novel integrated approach," Energy Economics, Elsevier, vol. 85(C).
    13. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    14. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    15. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    16. Akalpler, Ergin & Hove, Simbarashe, 2019. "Carbon emissions, energy use, real GDP per capita and trade matrix in the Indian economy-an ARDL approach," Energy, Elsevier, vol. 168(C), pages 1081-1093.
    17. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    18. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    19. Hao, Yu & Guo, Yunxia & Guo, Yitong & Wu, Haitao & Ren, Siyu, 2020. "Does outward foreign direct investment (OFDI) affect the home country’s environmental quality? The case of China," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 109-119.
    20. Miao, Chenglin & Fang, Debin & Sun, Liyan & Luo, Qiaoling, 2017. "Natural resources utilization efficiency under the influence of green technological innovation," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 153-161.
    21. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    22. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    23. Jacob K. Goeree & Charles A. Holt & Karen Palmer & William Shobe & Dallas Burtraw, 2010. "An Experimental Study of Auctions Versus Grandfathering to Assign Pollution Permits," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 514-525, 04-05.
    24. Zhou, Xinxing & Gao, Yan & Wang, Ping & Zhu, Bangzhu & Wu, Zhanchi, 2022. "Does herding behavior exist in China's carbon markets?," Applied Energy, Elsevier, vol. 308(C).
    25. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    26. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
    27. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    28. Yang, Xinyu & Jiang, Ping & Pan, Yao, 2020. "Does China's carbon emission trading policy have an employment double dividend and a Porter effect?," Energy Policy, Elsevier, vol. 142(C).
    29. Wang, Shuhong & Zhao, Danqing & Chen, Hanxue, 2020. "Government corruption, resource misallocation, and ecological efficiency," Energy Economics, Elsevier, vol. 85(C).
    30. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    31. Shahbaz, Muhammad & Balsalobre-Lorente, Daniel & Sinha, Avik, 2019. "Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African countries: Importance of Biomass Energy Consumption," MPRA Paper 91729, University Library of Munich, Germany, revised 19 Jan 2019.
    32. Demena, Binyam Afewerk & Afesorgbor, Sylvanus Kwaku, 2020. "The effect of FDI on environmental emissions: Evidence from a meta-analysis," Energy Policy, Elsevier, vol. 138(C).
    33. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    34. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    35. Lin, Boqiang & Jia, Zhijie, 2019. "What will China's carbon emission trading market affect with only electricity sector involvement? A CGE based study," Energy Economics, Elsevier, vol. 78(C), pages 301-311.
    36. Kaoru Tone & Miki Tsutsui, 2010. "An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency," GRIPS Discussion Papers 09-21, National Graduate Institute for Policy Studies.
    37. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    38. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    39. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    40. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    41. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    42. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    43. Song, Malin & Wang, Shuhong & Sun, Jing, 2018. "Environmental regulations, staff quality, green technology, R&D efficiency, and profit in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Liu & Xin Ding & Xiaoqian Song & Tao Dong & Aiwen Zhao & Mi Tan, 2023. "Research on the Spillover Effect of China’s Carbon Market from the Perspective of Regional Cooperation," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Meng, Conghui & Du, Xiaoyun & Zhu, Mengcheng & Ren, Yitian & Fang, Kai, 2023. "The static and dynamic carbon emission efficiency of transport industry in China," Energy, Elsevier, vol. 274(C).
    3. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    2. Sun, Yanming & Shen, Simiao & Zhou, Chuanyu, 2023. "Does the pilot emissions trading system in China promote innovation? Evidence based on green technology innovation in the energy sector," Energy Economics, Elsevier, vol. 126(C).
    3. Li Meng & Ke Wang & Taoyong Su & He He, 2022. "Carbon Emission Trading and Corporate Financing: Evidence from China," Energies, MDPI, vol. 15(14), pages 1-13, July.
    4. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.
    6. Chia-Nan Wang & Kristofer Neal Castro Imperial & Ching-Chien Huang & Thanh-Tuan Dang, 2022. "Output Targeting and Runway Utilization of Major International Airports: A Comparative Analysis Using DEA," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    7. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    8. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    9. Liu, Yunqiang & Liu, Sha & Shao, Xiaoyu & He, Yanqiu, 2022. "Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    11. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    12. Xiaosheng Li & Yunxia Shu & Xin Jin, 2022. "Environmental regulation, carbon emissions and green total factor productivity: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2577-2597, February.
    13. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    14. Sun, Chuanwang & Tie, Ying & Yu, Lili, 2024. "How to achieve both environmental protection and firm performance improvement: Based on China's carbon emissions trading (CET) policy," Energy Economics, Elsevier, vol. 130(C).
    15. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    16. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    17. Haixiang Xu & Rui Zhang, 2024. "Dynamic Analysis of Urban Land Use Efficiency in the Western Taiwan Strait Economic Zone," Land, MDPI, vol. 13(8), pages 1-26, August.
    18. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    19. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    20. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.