IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i3ne514.html
   My bibliography  Save this article

Integrated assessment models for resource–environment–economy coordinated development

Author

Listed:
  • Hao Li
  • Pengru Fan
  • Yukun Wang
  • Yang Lu
  • Feng Chen
  • Haotian Zhang
  • Bin Zhang
  • Bo Wang
  • Zhaohua Wang

Abstract

Resources–environment–economy coordinated development (REECD) is important for global sustainable development goals (SDGs). Integrated assessment model (IAM) is widely applied to investigate REECD‐related issues and design policy or technology development pathways. Accordingly, this study reviews existing literatures on the REECD related IAMs in terms of nexus mechanism, classification, theoretical basis and applicability, and puts forward possible expansion dimensions for improving the models. IAMs could be categorized into top‐down ones mainly based on computable general equilibrium and optimization theories, and bottom‐up ones generally based on engineering‐technological and ecology‐environmental analysis. Top‐down and bottom‐up combined IAMs are increasingly employed to evaluate the impacts of policy implementation, technological penetration and behavior modification, in order to improve the accuracy for decision‐making. Meanwhile, IAMs for REECD are need to be further developed to increase its applicability for analyzing high‐resolution and high‐frequency inventories of resource development and pollutant emissions. Existing IAMs should also embrace key resources consumption such as heavy and strategic metals. Due to tighter carbon emission space under 1.5‐degree and carbon‐neutral climate targets, the nexus mechanism of REECD would change significantly in future, which we need to characterize these variations in the models. Furthermore, researchers and developers should pay more attention to model improvement towards the developing and emerging economies. This article is categorized under: Sustainable Development > Emerging Economies Sustainable Development > Goals Human and Social Dimensions > Energy and Climate Justice

Suggested Citation

  • Hao Li & Pengru Fan & Yukun Wang & Yang Lu & Feng Chen & Haotian Zhang & Bin Zhang & Bo Wang & Zhaohua Wang, 2024. "Integrated assessment models for resource–environment–economy coordinated development," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:3:n:e514
    DOI: 10.1002/wene.514
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.514
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    2. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Rebecca Newman & Ilan Noy, 2023. "The global costs of extreme weather that are attributable to climate change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Christoph Hambel & Holger Kraft & Eduardo Schwartz, 2015. "Optimal Carbon Abatement in a Stochastic Equilibrium Model with Climate Change," NBER Working Papers 21044, National Bureau of Economic Research, Inc.
    5. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    6. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    7. Raimund Bleischwitz & Catalina Spataru & Stacy D. VanDeveer & Michael Obersteiner & Ester Voet & Corey Johnson & Philip Andrews-Speed & Tim Boersma & Holger Hoff & Detlef P. Vuuren, 2018. "Resource nexus perspectives towards the United Nations Sustainable Development Goals," Nature Sustainability, Nature, vol. 1(12), pages 737-743, December.
    8. Takuma Watari & Sho Hata & Kenichi Nakajima & Keisuke Nansai, 2023. "Limited quantity and quality of steel supply in a zero-emission future," Nature Sustainability, Nature, vol. 6(3), pages 336-343, March.
    9. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    10. Badeeb, Ramez Abubakr & Lean, Hooi Hooi & Shahbaz, Muhammad, 2020. "Are too many natural resources to blame for the shape of the Environmental Kuznets Curve in resource-based economies?," Resources Policy, Elsevier, vol. 68(C).
    11. Garth Heutel, 2012. "How Should Environmental Policy Respond to Business Cycles? Optimal Policy under Persistent Productivity Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 244-264, April.
    12. David Klein & Gunnar Luderer & Elmar Kriegler & Jessica Strefler & Nico Bauer & Marian Leimbach & Alexander Popp & Jan Dietrich & Florian Humpenöder & Hermann Lotze-Campen & Ottmar Edenhofer, 2014. "The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE," Climatic Change, Springer, vol. 123(3), pages 705-718, April.
    13. Wang, Jinman & Wang, Ruogu & Zhu, Yucheng & Li, Jiayan, 2018. "Life cycle assessment and environmental cost accounting of coal-fired power generation in China," Energy Policy, Elsevier, vol. 115(C), pages 374-384.
    14. Zhaohua Wang & Hao Li & Bin Zhang & Bo Wang & Hao Li & Xin Tian & Jiang Lin & Wei Feng, 2023. "Unequal residential heating burden caused by combined heat and power phase-out under climate goals," Nature Energy, Nature, vol. 8(8), pages 881-890, August.
    15. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    16. Narasimha D. Rao & Gregor Kiesewetter & Jihoon Min & Shonali Pachauri & Fabian Wagner, 2021. "Household contributions to and impacts from air pollution in India," Nature Sustainability, Nature, vol. 4(10), pages 859-867, October.
    17. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    18. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    19. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    20. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    21. Ju, Yiyi & Sugiyama, Masahiro & Kato, Etsushi & Oshiro, Ken & Wang, Jiayang, 2022. "Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models," Applied Energy, Elsevier, vol. 318(C).
    22. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    23. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    24. Rebecca Chaplin-Kramer & Sarah Sim & Perrine Hamel & Benjamin Bryant & Ryan Noe & Carina Mueller & Giles Rigarlsford & Michal Kulak & Virginia Kowal & Richard Sharp & Julie Clavreul & Edward Price & S, 2017. "Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    25. Donadelli, M. & Jüppner, M. & Riedel, M. & Schlag, C., 2017. "Temperature shocks and welfare costs," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 331-355.
    26. Jianguo Liu & Vanessa Hull & H. Charles J. Godfray & David Tilman & Peter Gleick & Holger Hoff & Claudia Pahl-Wostl & Zhenci Xu & Min Gon Chung & Jing Sun & Shuxin Li, 2018. "Nexus approaches to global sustainable development," Nature Sustainability, Nature, vol. 1(9), pages 466-476, September.
    27. Hiroto Shiraki & Masahiro Sugiyama, 2020. "Back to the basic: toward improvement of technoeconomic representation in integrated assessment models," Climatic Change, Springer, vol. 162(1), pages 13-24, September.
    28. Biying Yu & Zihao Zhao & Yi-Ming Wei & Lan-Cui Liu & Qingyu Zhao & Shuo Xu & Jia-Ning Kang & Hua Liao, 2023. "Approaching national climate targets in China considering the challenge of regional inequality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    29. Wencong, Lu & Kasimov, Ikboljon & Saydaliev, Hayot Berk, 2023. "Foreign direct investment and renewable energy: Examining the environmental Kuznets curve in resource-rich transition economies," Renewable Energy, Elsevier, vol. 208(C), pages 301-310.
    30. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    31. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    32. Leon Merfort & Nico Bauer & Florian Humpenöder & David Klein & Jessica Strefler & Alexander Popp & Gunnar Luderer & Elmar Kriegler, 2023. "Bioenergy-induced land-use-change emissions with sectorally fragmented policies," Nature Climate Change, Nature, vol. 13(7), pages 685-692, July.
    33. Giacomo Grassi & Elke Stehfest & Joeri Rogelj & Detlef Vuuren & Alessandro Cescatti & Jo House & Gert-Jan Nabuurs & Simone Rossi & Ramdane Alkama & Raúl Abad Viñas & Katherine Calvin & Guido Ceccherin, 2021. "Critical adjustment of land mitigation pathways for assessing countries’ climate progress," Nature Climate Change, Nature, vol. 11(5), pages 425-434, May.
    34. David J. Frame & Michael F. Wehner & Ilan Noy & Suzanne M. Rosier, 2020. "The economic costs of Hurricane Harvey attributable to climate change," Climatic Change, Springer, vol. 160(2), pages 271-281, May.
    35. Ji, Shiyu & Chen, Bin, 2016. "Carbon footprint accounting of a typical wind farm in China," Applied Energy, Elsevier, vol. 180(C), pages 416-423.
    36. Liu, Junfeng & Shen, Fei & Zhang, Jingru, 2023. "Economic and environmental effects of mineral resource exploitation: Evidence from China," Resources Policy, Elsevier, vol. 86(PB).
    37. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    38. Yadong Lei & Zhili Wang & Deying Wang & Xiaoye Zhang & Huizheng Che & Xu Yue & Chenguang Tian & Junting Zhong & Lifeng Guo & Lei Li & Hao Zhou & Lin Liu & Yangyang Xu, 2023. "Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy," Nature Climate Change, Nature, vol. 13(7), pages 693-700, July.
    39. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    40. Steef V. Hanssen & Vassilis Daioglou & Zoran J. N. Steinmann & Stefan Frank & Alexander Popp & Thierry Brunelle & Pekka Lauri & Tomoko Hasegawa & Mark A. J. Huijbregts & Detlef P. Vuuren, 2020. "Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models," Climatic Change, Springer, vol. 163(3), pages 1569-1586, December.
    41. Alexandra Devlin & Jannik Kossen & Haulwen Goldie-Jones & Aidong Yang, 2023. "Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    42. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    43. Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
    44. Özer, Betül & Görgün, Erdem & İncecik, Selahattin, 2013. "The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030," Energy, Elsevier, vol. 49(C), pages 395-403.
    45. Simone Cenci & Matteo Burato & Marek Rei & Maurizio Zollo, 2023. "The alignment of companies' sustainability behavior and emissions with global climate targets," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    46. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    47. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    48. Richard H. Clarke & Noah J. Wescombe & Saleemul Huq & Mizan Khan & Bert Kramer & Domenico Lombardi, 2023. "Climate loss-and-damage funding: a mechanism to make it work," Nature, Nature, vol. 623(7988), pages 689-692, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).
    2. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zhang, Tianyuan & Tan, Qian & Cai, Yanpeng, 2024. "General equilibrium analysis of carbon tax policy on water-energy-food nexus efficiency," Energy, Elsevier, vol. 304(C).
    4. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    5. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    7. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    8. Donadelli, Michael & Grüning, Patrick & Jüppner, Marcus & Kizys, Renatas, 2021. "Global temperature, R&D expenditure, and growth," Energy Economics, Elsevier, vol. 104(C).
    9. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Takuma Watari & André Cabrera Serrenho & Lukas Gast & Jonathan Cullen & Julian Allwood, 2023. "Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    12. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
    13. Castro Verdezoto, Pedro L. & Vidoza, Jorge A. & Gallo, Waldyr L.R., 2019. "Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector," Energy Policy, Elsevier, vol. 134(C).
    14. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    15. Jan Anton van Zanten & Rob van Tulder, 2021. "Improving companies' impacts on sustainable development: A nexus approach to the SDGS," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 3703-3720, December.
    16. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
    17. Punzi, Maria Teresa, 2024. "The role of macroprudential policies under carbon pricing," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 858-875.
    18. Drudi, Francesco & Moench, Emanuel & Holthausen, Cornelia & Weber, Pierre-François & Ferrucci, Gianluigi & Setzer, Ralph & Adao, Bernardino & Dées, Stéphane & Alogoskoufis, Spyros & Téllez, Mar Delgad, 2021. "Climate change and monetary policy in the euro area," Occasional Paper Series 271, European Central Bank.
    19. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    20. Jin, Yi & Yang, Jialiang & Feng, Cuiyang & Li, Yingzhu, 2024. "The employment impacts of fossil fuel trade across cities in China: A telecoupling perspective," Energy, Elsevier, vol. 307(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:3:n:e514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.