IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v126y2023ics0140988323004759.html
   My bibliography  Save this article

Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data

Author

Listed:
  • Su, Bin
  • Ang, B.W.

Abstract

Structural decomposition analysis (SDA) is a well-known approach to studying factors contributing to changes of an aggregate indicator in energy and emissions studies. Such studies normally rely on yearly data since input-output (I-O) tables are needed. With energy and economic transitions and seasonal factors, variations in renewable energy supply and in final demands of goods and services are becoming more prominent within a year in many countries. If monthly data are incorporated, some temporal dynamics within a year can be investigated in SDA application. In this paper, we propose an additive SDA framework and a multiplicative SDA framework that include monthly data to respectively reveal the drivers of temporal dynamics associated with energy/emissions embodiments and aggregate embodied intensity indicators. Based on China's 2018 and 2020 I-O tables, an empirical study is conducted using the proposed frameworks. The results obtained show that the increased granularity helps to reveal temporal dynamics mechanisms which will otherwise be overlooked. We discuss the findings and present areas for future research.

Suggested Citation

  • Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323004759
    DOI: 10.1016/j.eneco.2023.106977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323004759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    2. Erik Dietzenbacher & Alex R. Hoen & Bart Los, 2000. "Labor Productivity in Western Europe 1975–1985: An Intercountry, Interindustry Analysis," Journal of Regional Science, Wiley Blackwell, vol. 40(3), pages 425-452, August.
    3. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    4. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    5. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    6. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    7. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    8. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    9. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    2. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    3. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    4. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    2. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    3. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    4. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    5. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    6. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    7. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    8. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    9. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    10. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    11. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    12. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    14. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    15. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    16. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    17. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    18. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    19. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    20. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).

    More about this item

    Keywords

    Input-output analysis; Temporal disaggregation; Structural decomposition analysis; Energy and emissions; Temporal dynamics;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323004759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.