IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p3929-d532621.html
   My bibliography  Save this article

Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities

Author

Listed:
  • Jincai Zhao

    (School of Business, Henan Normal University, Xinxiang 453007, Henan, China)

  • Qianqian Liu

    (School of Geography Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, Jiangsu, China)

Abstract

Improving carbon efficiency and reducing carbon intensity are effective means of mitigating climate change. Carbon emissions due to urban residential energy consumption have increased significantly; however, there is a lack of research on urban residential carbon intensity. This paper examines the spatiotemporal variation of carbon intensity in the residential sector during 2001–2015, and then identifies the causes of the variation by utilizing the logarithmic mean Divisia index (LMDI) with the help of Microsoft Excel 2016 for 620 county-level cities in 30 Chinese provinces. The results show that high carbon intensity is mainly found in large cities, such as Beijing, Tianjin, and Shanghai. However, these cities showed a downward trend in carbon intensity. In terms of influencing factors, the energy consumption per capita, urban sprawl, and land demand are the three most influential factors in determining the changes in carbon intensity. The effect of energy consumption per capita mainly increases the carbon intensity, and its impact is higher in the municipal districts of provincial capital cities than in other types of cities. Similarly, the urban sprawl effect also promotes increases in carbon intensity, and a higher degree of influence appears in large cities. However, as urban expansion plateaus, the effect of urban sprawl decreases. The land-demand effect reduces the carbon intensity, and the degree of influence of the land-demand effect on carbon intensity is also clearly stronger in big cities. Our findings show that lowering the energy consumption per capita and optimizing the land-use structure are a reasonable direction of efforts, and the effects of differences in influencing factors should be paid more attention to reduce carbon intensity.

Suggested Citation

  • Jincai Zhao & Qianqian Liu, 2021. "Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3929-:d:532621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/3929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/3929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Greening, Lorna A. & Ting, Michael & Krackler, Thomas J., 2001. "Effects of changes in residential end-uses and behavior on aggregate carbon intensity: comparison of 10 OECD countries for the period 1970 through 1993," Energy Economics, Elsevier, vol. 23(2), pages 153-178, March.
    4. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    5. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    6. Li, Chuan-Zhong & Wei, Chu & Yu, Yang, 2020. "Income threshold, household appliance ownership and residential energy consumption in urban China," China Economic Review, Elsevier, vol. 60(C).
    7. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    8. Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    9. Jiang, Jinhe, 2016. "China's urban residential carbon emission and energy efficiency policy," Energy, Elsevier, vol. 109(C), pages 866-875.
    10. Richard Perkins & Eric Neumayer, 2012. "Do recipient country characteristics affect international spillovers of CO 2 -efficiency via trade and foreign direct investment?," Climatic Change, Springer, vol. 112(2), pages 469-491, May.
    11. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    12. Lu, Xinhai & Chen, Danling & Kuang, Bing & Zhang, Chaozheng & Cheng, Chen, 2020. "Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency," Land Use Policy, Elsevier, vol. 95(C).
    13. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    14. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    15. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    16. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    17. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    18. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    19. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    20. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    21. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    22. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    23. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Gen Li & Shihong Zeng & Tengfei Li & Qiao Peng & Muhammad Irfan, 2023. "Analysing the Effect of Energy Intensity on Carbon Emission Reduction in Beijing," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    3. Yang Sun & Mengna Du & Leying Wu & Changzhe Li & Yulong Chen, 2022. "Evaluating the Effects of Renewable Energy Consumption on Carbon Emissions of China’s Provinces: Based on Spatial Durbin Model," Land, MDPI, vol. 11(8), pages 1-17, August.
    4. Xiaogang Song & Shufan Zhai & Na Zhou, 2024. "The Carbon Emissions from Public Buildings in China: A Systematic Analysis of Evolution and Spillover Effects," Sustainability, MDPI, vol. 16(15), pages 1-22, August.
    5. Yanfei Lei & Chao Xu & Yunpeng Wang & Xulong Liu, 2024. "Grid Model of Energy Consumption Using Random Forest by Integrating Data on the Nighttime Light, Population, and Urban Impervious Surface (2000–2020) in the Guangdong–Hong Kong–Macau Greater Bay Area," Energies, MDPI, vol. 17(11), pages 1-18, May.
    6. Guanghui Tian & Jianming Miao & Changhong Miao & Yehua Dennis Wei & Dongyang Yang, 2022. "Interplay of Environmental Regulation and Local Protectionism in China," IJERPH, MDPI, vol. 19(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    2. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    3. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    4. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    5. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    6. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    8. Yong Yang & Junsong Jia & Chundi Chen, 2020. "Residential Energy-Related CO 2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    9. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    10. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    11. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    12. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    13. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    14. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    15. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    16. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    17. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    18. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    19. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    20. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3929-:d:532621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.