IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v190y2024ics0301421524001903.html
   My bibliography  Save this article

The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data

Author

Listed:
  • Shi, Han
  • Wang, Bo
  • Qiu, Yueming Lucy
  • Deng, Nana
  • Xie, Baichen
  • Zhang, Bin
  • Ma, Shijun

Abstract

Climate change is predicted to result in more frequent extreme weather conditions and large temperature shocks. Existing research has largely focused on exploring the response relationship between temperature and energy consumption, however, adaptability gaps among different income groups during extremely high temperatures remain unclear. This study examines the effect of temperature shocks on electricity consumption using high-frequency and fine-grained data from 68,540 Chinese households. The results indicate that the poverty-stricken households' electricity consumption is only 65.2% of the urban households’ as responsive to high temperatures. Additionally, the heatwaves and the tiered price induce the bigger adaptability gaps. For the occurrence of heatwave disasters on hot days, electricity consumption decreases by 0.95% for poverty-stricken households, while increasing by 0.52% for urban households. When the cost of electricity rises, the adaptability for poverty-stricken households is 1.87 and 2.89 times weaker than that of urban and rural households, respectively. Using different scenarios of projected future temperatures, we estimate that the average adaptability gaps will increase by 0.76–3.64% in the middle term and 1.53–5.07% in the long term among poverty-stricken households and other groups. These findings highlight the importance of adaptation strategies to climate change, particularly for poverty-stricken households.

Suggested Citation

  • Shi, Han & Wang, Bo & Qiu, Yueming Lucy & Deng, Nana & Xie, Baichen & Zhang, Bin & Ma, Shijun, 2024. "The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data," Energy Policy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001903
    DOI: 10.1016/j.enpol.2024.114170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524001903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    2. Mullins, Jamie T. & White, Corey, 2019. "Temperature and mental health: Evidence from the spectrum of mental health outcomes," Journal of Health Economics, Elsevier, vol. 68(C).
    3. Wang, Yao & Lin, Boqiang, 2022. "Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China," Applied Energy, Elsevier, vol. 321(C).
    4. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    5. Gilbert E. Metcalf & Kevin A. Hassett, 1999. "Measuring The Energy Savings From Home Improvement Investments: Evidence From Monthly Billing Data," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 516-528, August.
    6. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    7. Deng, Nana & Wang, Bo & Wang, Zhaohua, 2023. "Does targeted poverty alleviation improve households’ adaptation to hot weathers: Evidence from electricity consumption of poor households," Energy Policy, Elsevier, vol. 183(C).
    8. Shuchen Cong & Destenie Nock & Yueming Lucy Qiu & Bo Xing, 2022. "Unveiling hidden energy poverty using the energy equity gap," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Doremus, Jacqueline M. & Jacqz, Irene & Johnston, Sarah, 2022. "Sweating the energy bill: Extreme weather, poor households, and the energy spending gap," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    10. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    11. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    12. Eshita Gupta, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A Semi-parametric variable coefficient approach," Discussion Papers 12-02, Indian Statistical Institute, Delhi.
    13. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    14. Chen, Feifei & Qiu, Huanguang & Zhang, Jun, 2022. "Energy consumption and income of the poor in rural China: Inference for poverty measures," Energy Policy, Elsevier, vol. 163(C).
    15. Alan Barreca & R. Jisung Park & Paul Stainier, 2022. "High temperatures and electricity disconnections for low-income homes in California," Nature Energy, Nature, vol. 7(11), pages 1052-1064, November.
    16. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    17. Nguyen, Canh Phuc & Su, Thanh Dinh, 2022. "The influences of government spending on energy poverty: Evidence from developing countries," Energy, Elsevier, vol. 238(PA).
    18. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    19. Hanjie Wang & Tao Wen & Jiali Han, 2020. "Can Government Financial Inflows Effectively Reduce Poverty in Poverty-Stricken Areas? Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(11), pages 2461-2473, September.
    20. Fishman, Ram & Carrillo, Paul & Russ, Jason, 2019. "Long-term impacts of exposure to high temperatures on human capital and economic productivity," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 221-238.
    21. Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    22. Martins, Luís Oscar Silva & Amorim, Inara Rosa & Mendes, Vinícius de Araújo & Silva, Marcelo Santana & Freires, Francisco Gaudêncio Mendonça & Teles, Eduardo Oliveira & Torres, Ednildo Andrade, 2021. "Price and income elasticities of residential electricity demand in Brazil and policy implications," Utilities Policy, Elsevier, vol. 71(C).
    23. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    24. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    25. Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Publisher Correction: Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    26. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    27. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    2. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    3. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    4. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    5. Dang, Hai-Anh & Hallegatte, Stephane & Trinh, Trong-Anh, 2023. "Does Global Warming Worsen Poverty and Inequality? An Updated Review," IZA Discussion Papers 16570, Institute of Labor Economics (IZA).
    6. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    7. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    8. Deng, Nana & Wang, Bo & Wang, Zhaohua, 2023. "Does targeted poverty alleviation improve households’ adaptation to hot weathers: Evidence from electricity consumption of poor households," Energy Policy, Elsevier, vol. 183(C).
    9. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    10. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    11. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    12. Feriga, Moustafa & Lozano Gracia, Nancy & Serneels, Pieter, 2024. "The Impact of Climate Change on Work Lessons for Developing Countries," IZA Discussion Papers 16914, Institute of Labor Economics (IZA).
    13. Meixuan Teng & Hua Liao & Paul J. Burke & Tianqi Chen & Chen Zhang, 2022. "Adaptive responses: the effects of temperature levels on residential electricity use in China," Climatic Change, Springer, vol. 172(3), pages 1-20, June.
    14. Feeny, Simon & Trinh, Trong-Anh & Zhu, Anna, 2021. "Temperature shocks and energy poverty: Findings from Vietnam," Energy Economics, Elsevier, vol. 99(C).
    15. Agarwal, Sumit & Qin, Yu & Shi, Luwen & Wei, Guoxu & Zhu, Hongjia, 2021. "Impact of temperature on morbidity: New evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    16. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    17. Neidell, Matthew & Uchida, Shinsuke & Veronesi, Marcella, 2019. "Be Cautious with the Precautionary Principle: Evidence from Fukushima Daiichi Nuclear Accident," IZA Discussion Papers 12687, Institute of Labor Economics (IZA).
    18. Neidell, Matthew & Uchida, Shinsuke & Veronesi, Marcella, 2021. "The unintended effects from halting nuclear power production: Evidence from Fukushima Daiichi accident," Journal of Health Economics, Elsevier, vol. 79(C).
    19. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    20. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.