IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i6d10.1007_s10668-019-00432-2.html
   My bibliography  Save this article

Estimating Chinese rural and urban residents’ carbon consumption and its drivers: considering capital formation as a productive input

Author

Listed:
  • Ming Cao

    (China University of Mining and Technology)

  • Wei Kang

    (China University of Mining and Technology)

  • Qingren Cao

    (China University of Mining and Technology
    Jiangsu Energy Economics and Management Research Base)

  • M. Jawad Sajid

    (China University of Mining and Technology)

Abstract

Estimating carbon emissions from the perspective of consumption and reducing carbon emission by guiding residents’ consumption is paid more and more attention by some countries and organizations. This study by considering the capital formation as a productive input of final consumer products estimates the carbon consumption of Chinese residents. Furthermore, it explores the driving factors of carbon consumption based on structural decomposition analysis. Results showed that the carbon consumption of Chinese residents (rural and urban) grew steadily. The annual carbon consumption by urban and rural residents increased at a rate of 9.94% and 0.81%, respectively. The average per capita indirect carbon consumption by urban residents during the period was 3.17 times of that by rural residents. Structural decomposition analysis showed that the structure of the urban and rural population and that of the total population are both critical factors promoting carbon consumption by residents, where the former is more powerful. The per capita product consumption caused an increase in the carbon intake of households, while the carbon emission intensity of industrial production decreased the carbon use. Although other factors also contributed to the increase in carbon consumption by residents, their role was comparatively less. This study also provides consumer-focused important carbon emission mitigation policy implications.

Suggested Citation

  • Ming Cao & Wei Kang & Qingren Cao & M. Jawad Sajid, 2020. "Estimating Chinese rural and urban residents’ carbon consumption and its drivers: considering capital formation as a productive input," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5443-5464, August.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00432-2
    DOI: 10.1007/s10668-019-00432-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00432-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00432-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Yu & Wang, Ling'ou & Zhu, Lingyun & Ye, Minjie, 2018. "The dynamic relationship between energy consumption, investment and economic growth in China's rural area: New evidence based on provincial panel data," Energy, Elsevier, vol. 154(C), pages 374-382.
    2. Stefan Giljum & Klaus Hubacek, 2004. "Alternative Approaches of Physical Input-Output Analysis to Estimate Primary Material Inputs of Production and Consumption Activities," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 301-310.
    3. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    4. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    5. Haitao Zheng & Qi Fang & Cheng Wang & Huiwen Wang & Ruoen Ren, 2017. "China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    6. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    7. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    8. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    9. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    10. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    11. Lee, Min-Kyu & Yoo, Seung-Hoon, 2014. "The role of the capture fisheries and aquaculture sectors in the Korean national economy: An input–output analysis," Marine Policy, Elsevier, vol. 44(C), pages 448-456.
    12. Böhringer, Christoph & Bye, Brita & Fæhn, Taran & Rosendahl, Knut Einar, 2017. "Targeted carbon tariffs: Export response, leakage and welfare," Resource and Energy Economics, Elsevier, vol. 50(C), pages 51-73.
    13. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    14. Liu, Tiantian & Wang, Qunwei & Su, Bin, 2016. "A review of carbon labeling: Standards, implementation, and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 68-79.
    15. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    16. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    17. Carl†Johan Södersten & Richard Wood & Edgar G. Hertwich, 2018. "Environmental Impacts of Capital Formation," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 55-67, February.
    18. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    19. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    2. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    3. Zhijun Li & Yigang Wei & Yan Li & Zhicheng Wang & Jinming Zhang, 2020. "China’s Provincial Eco-Efficiency and Its Driving Factors—Based on Network DEA and PLS-SEM Method," IJERPH, MDPI, vol. 17(22), pages 1-31, November.
    4. Sicheng Wang & Yuanyuan Guo & Hao Zhang & Mingming Gao, 2023. "A Life-Cycle Carbon Emissions Evaluation Model for Traditional Residential Houses: Applying to Traditional Dong Dwellings in Qandongnan, Guizhou Province, China," Sustainability, MDPI, vol. 15(18), pages 1-31, September.
    5. Yi Chen & Yinrong Chen & Kun Chen & Min Liu, 2023. "Research Progress and Hotspot Analysis of Residential Carbon Emissions Based on CiteSpace Software," IJERPH, MDPI, vol. 20(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haitao Zheng & Qi Fang & Cheng Wang & Huiwen Wang & Ruoen Ren, 2017. "China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    2. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    3. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    4. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    5. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
    6. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    7. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    8. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    9. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    10. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    11. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    12. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    13. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    14. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    15. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    16. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    17. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    18. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    19. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    20. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00432-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.