IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8128-d959496.html
   My bibliography  Save this article

Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality

Author

Listed:
  • Di Zhu

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Yinghong Wang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Fenglin Zhang

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

In the context of international carbon neutrality, energy prices are affected by several nonlinear and nonstationary factors, making it challenging for traditional forecasting models to predict energy prices effectively. The existing literature mainly uses linear models or a combination of multiple models to forecast energy prices. For the nonlinear relationship between variables and the mining of historical data information, the prediction strategy and accuracy of the existing literature need to be improved. Thus, this paper improves the prediction accuracy of energy prices by developing a “decomposition-reconstruction-integration” thinking strategy that affords medium- and short-term energy price prediction based on carbon constraint, eigenvalue transformation and deep learning neural networks. Considering 2011–2020 as the research period, the prices for traditional energy resources and polysilicon in clean photovoltaic energy raw materials are selected as representatives. Based on energy price decomposition using the Singular Spectrum Analysis (SSA) method, and combining it with Learning Vector Quantization (LVQ) cluster technology, the decomposed quantities are aggregated into price sequences with different characteristics. Additionally, the carbon intensity is considered the leading market’s overall constraint, which is input with the processed price data into a Long Short-Term Memory network (LSTM) model for training. Thus, the SSA-LSTM combined forecasting model is developed to predict the energy price under carbon neutrality. Four indices are employed to evaluate the prediction accuracy: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and R-squared. The results highlight the following observations. (1) Using a sequence decomposition clustering strategy significantly improves the model’s prediction accuracy. This strategy enhances predicting the overall trend of the price series and the changes in different periods. For coal price, the RMSE value decreased from 0.135 to 0.098, the MAE value decreased from 0.087 to 0.054, the MAPE value decreased from 0.072 to 0.064, and the R-squared value increased from 0.643 to 0.725. Regarding the polysilicon price, the RMSE value decreased from 0.121 to 0.096, the MAE value decreased from 0.068 to 0.064, the MAPE value decreased from 0.069 to 0.048, and the R-squared value increased from 0.718 to 0.764. (2) The prediction effect is better in the case of carbon constraint. Considering “carbon emission intensity” as the overall constraint of the leading market, it can effectively explore the typical characteristics of energy price information. Four evaluation indicators show that the accuracy of the model prediction can be improved by more than 3%. (3) When the proposed SSA-LSTM model is used to predict both prices, the results show that the evaluation index of the prediction error remained at about 1%, while the model’s accuracy was high. This also proves that the proposed model can predict traditional energy prices and new energy sources such as solar energy.

Suggested Citation

  • Di Zhu & Yinghong Wang & Fenglin Zhang, 2022. "Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8128-:d:959496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongxi Ma & Lu Zhang & Shixiong Song & Shuao Yu, 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    2. Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
    3. Andrea Coppola, 2008. "Forecasting oil price movements: Exploiting the information in the futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(1), pages 34-56, January.
    4. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    5. Afshar, K. & Bigdeli, N., 2011. "Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA)," Energy, Elsevier, vol. 36(5), pages 2620-2627.
    6. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    7. Yangrui Zhang & Peng Tao & Xiangming Wu & Chenguang Yang & Guang Han & Hui Zhou & Yinlong Hu, 2022. "Hourly Electricity Price Prediction for Electricity Market with High Proportion of Wind and Solar Power," Energies, MDPI, vol. 15(4), pages 1-13, February.
    8. Carolina Garcia-Martos & Eduardo Caro & Maria Jesus Sanchez, 2015. "Electricity price forecasting accounting for renewable energies: optimal combined forecasts," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 871-884, May.
    9. Wang, Yafei & Liao, Meng & Wang, Yafei & Xu, Lixiao & Malik, Arunima, 2021. "The impact of foreign direct investment on China's carbon emissions through energy intensity and emissions trading system," Energy Economics, Elsevier, vol. 97(C).
    10. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    11. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    12. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    13. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    14. Zhang, Yue-Jun & Wang, Jing, 2015. "Exploring the WTI crude oil price bubble process using the Markov regime switching model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 377-387.
    15. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    16. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
    17. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    18. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    19. Shumin Jiang & Jingtao Guo & Chen Yang & Zhanwen Ding & Lixin Tian, 2017. "Analysis of the Relative Price in China’s Energy Market for Reducing the Emissions from Consumption," Energies, MDPI, vol. 10(5), pages 1-13, May.
    20. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    21. Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    22. Yang, Fei-fei & Zhao, Xin-gang, 2018. "Policies and economic efficiency of China's distributed photovoltaic and energy storage industry," Energy, Elsevier, vol. 154(C), pages 221-230.
    23. Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
    2. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    3. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    4. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    5. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    6. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    7. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    8. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    9. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    10. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    11. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    12. Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe & Zhou, Xuewei & Wang, Ren, 2024. "A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention," Energy Economics, Elsevier, vol. 138(C).
    14. Ebru Caglayan Akay & Sinem Guler Kangalli Uyar, 2016. "Determining the Functional Form of Relationships between Oil Prices and Macroeconomic Variables: The Case of Mexico, Indonesia, South Korea, Turkey Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 6(3), pages 880-891.
    15. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    16. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    17. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    18. Zhao, Lu-Tao & Wang, Yi & Guo, Shi-Qiu & Zeng, Guan-Rong, 2018. "A novel method based on numerical fitting for oil price trend forecasting," Applied Energy, Elsevier, vol. 220(C), pages 154-163.
    19. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    20. Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8128-:d:959496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.