IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1384-d107136.html
   My bibliography  Save this article

China’s Industrial Total-Factor Energy Productivity Growth at Sub-Industry Level: A Two-Step Stochastic Metafrontier Malmquist Index Approach

Author

Listed:
  • Lizhan Cao

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Zhongying Qi

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Junxia Ren

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Under the concept of metafrontier, technology gap ratio is alternatively interpreted as potential energy efficiency. Combined with Malmquist index framework and Shephard energy distance function, we then develop a metafrontier Malmquist energy productivity index to analyze the total-factor energy productivity growth with four specific components: groupfrontier efficiency change index, groupfrontier technological change index, efficiency catch-up index and technological catch-up index. Methodologically, a newly developed two-step stochastic metafrontier analysis is applied to address the potentially biased estimation problems in the previous mixed approach. This analytical framework is used to evaluate the energy productivity growth of China’s 35 sub-industries in industrial sector from 2001 to 2015. The main empirical results show that: (1) In terms of cumulative metafrontier Malmquist energy productivity growth, China’s overall industry has witnessed a 25% growth and a U-shaped growing trend bottoming out in 2006; meanwhile, 19 sub-industries have suffered an energy productivity loss and the remaining 16 sub-industries have experienced an energy productivity gain. (2) From the technology heterogeneity perspective, light industry outperforms heavy industry in metafrontier Malmquist energy productivity growth, while the intra-group and inter-group energy productivity develops roughly in balance for overall industry. (3) The change of metafrontier Malmquist energy productivity is mainly driven by technological change components rather than efficiency change components. On average, groupfrontier technological change makes the biggest contribution to energy productivity growth, followed by technological catch-up, then efficiency catch-up, and groupfrontier efficiency change is last. (4) The metafrontier Malmquist energy productivity growth has shown a significant convergence in heavy industry and light industry, as well as overall industry.

Suggested Citation

  • Lizhan Cao & Zhongying Qi & Junxia Ren, 2017. "China’s Industrial Total-Factor Energy Productivity Growth at Sub-Industry Level: A Two-Step Stochastic Metafrontier Malmquist Index Approach," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1384-:d:107136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    2. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    3. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    4. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    5. Hugo Fuentes & Emili Grifell-Tatjé & Sergio Perelman, 2001. "A Parametric Distance Function Approach for Malmquist Productivity Index Estimation," Journal of Productivity Analysis, Springer, vol. 15(2), pages 79-94, March.
    6. Ke Li & Malin Song, 2016. "Green Development Performance in China: A Metafrontier Non-Radial Approach," Sustainability, MDPI, vol. 8(3), pages 1-21, March.
    7. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    8. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    9. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    10. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    11. Mian Yang & Fuxia Yang, 2016. "Energy-Efficiency Policies and Energy Productivity Improvements: Evidence from China’s Manufacturing Industry," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(6), pages 1395-1404, June.
    12. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    13. Bert Balk, 2001. "Scale Efficiency and Productivity Change," Journal of Productivity Analysis, Springer, vol. 15(3), pages 159-183, May.
    14. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    15. Christos Pantzios & Giannis Karagiannis & Vangelis Tzouvelekas, 2011. "Parametric decomposition of the input-oriented Malmquist productivity index: with an application to Greek aquaculture," Journal of Productivity Analysis, Springer, vol. 36(1), pages 21-31, August.
    16. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    17. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    18. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    19. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    20. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    21. Xiaobo Shen & Boqiang Lin, 2017. "Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    22. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    23. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    24. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    25. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    26. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    27. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    28. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    29. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    30. Ku-Hsieh Chen & Hao-Yen Yang, 2011. "A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China," Journal of Productivity Analysis, Springer, vol. 35(3), pages 197-212, June.
    31. Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
    32. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    33. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    34. Bao-Guang Chang & Tai-Hsin Huang & Chun-Yi Kuo, 2015. "A comparison of the technical efficiency of accounting firms among the US, China, and Taiwan under the framework of a stochastic metafrontier production function," Journal of Productivity Analysis, Springer, vol. 44(3), pages 337-349, December.
    35. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
    36. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    37. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    38. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    39. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    40. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    41. Wang, H. & Zhou, P. & Wang, Qunwei, 2016. "Constructing slacks-based composite indicator of sustainable energy development for China: A meta-frontier nonparametric approach," Energy, Elsevier, vol. 101(C), pages 218-228.
    42. Luis Orea, 2002. "Parametric Decomposition of a Generalized Malmquist Productivity Index," Journal of Productivity Analysis, Springer, vol. 18(1), pages 5-22, July.
    43. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.
    44. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
    45. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    46. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naijela Janaina Costa Silveira & Diogo Ferraz & Eduardo Polloni‐Silva & Diego Scarpa de Mello & Fernanda Pereira Sartori Falguera & Herick Fernando Moralles, 2022. "Modeling the building blocks of country‐level absorptive capacity: Comparing developed and emergent economies," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 783-824, July.
    2. Quang-Thanh Ngo & Quang-Van Tran & Tien-Dung Nguyen & Trung-Thanh Nguyen, 2020. "How Heterogeneous Are the Determinants of Total Factor Productivity in Manufacturing Sectors? Panel-Data Evidence from Vietnam," Economies, MDPI, vol. 8(3), pages 1-25, July.
    3. Yuan Ma & Guisheng Hou & Baogui Xin, 2017. "Green Process Innovation and Innovation Benefit: The Mediating Effect of Firm Image," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    4. Han, Yongming & Lou, Xiaoyi & Feng, Mingfei & Geng, Zhiqiang & Chen, Liangchao & Ping, Weiying & Lu, Gang, 2022. "Energy consumption analysis and saving of buildings based on static and dynamic input-output models," Energy, Elsevier, vol. 239(PC).
    5. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    6. Jianxu Liu & Changrui Dong & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    7. Derek Wang & Tianchi Li, 2018. "Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States," Sustainability, MDPI, vol. 10(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    2. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    3. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    4. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    5. Jin, Gang & Yu, Binbin & Shen, Kunrong, 2021. "Domestic trade and energy productivity in China: An inverted U-shaped relationship," Energy Economics, Elsevier, vol. 97(C).
    6. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    9. Xiaobo Shen & Boqiang Lin, 2017. "Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    10. Feng, Chao & Wang, Miao & Liu, Guan-Chun & Huang, Jian-Bai, 2017. "Sources of economic growth in China from 2000–2013 and its further sustainable growth path: A three-hierarchy meta-frontier data envelopment analysis," Economic Modelling, Elsevier, vol. 64(C), pages 334-348.
    11. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    12. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    13. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    14. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    15. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    16. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    17. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Miao, Zhuang, 2018. "Improvement pathway of energy consumption structure in China's industrial sector: From the perspective of directed technical change," Energy Economics, Elsevier, vol. 72(C), pages 166-176.
    18. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    19. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    20. Tengfei Huo & Hong Ren & Weiguang Cai & Wei Feng & Miaohan Tang & Nan Zhou, 2018. "The total-factor energy productivity growth of China’s construction industry: evidence from the regional level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1593-1616, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1384-:d:107136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.