IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023028.html
   My bibliography  Save this article

Partner heterogeneity and driving factors of China's export embodied energy intensity

Author

Listed:
  • Xu, Renfei
  • Chen, Liming
  • Zhao, Yuanyuan
  • Xie, Rui
  • Chen, Xiangjie

Abstract

Although China's energy consumption is very high, foreign demand has become crucial factor affecting China's energy consumption due to exports. A detailed analysis of the embodied energy intensity of China's exports from the demand side could provide valuable insight into promoting China's energy-saving development. This paper explores disparities in the embodied energy intensity of China's exports to different trading partners and the energy supply structure behind these exports. Furthermore, it explores the driving factors of export embodied energy intensity using multiplicative structural decomposition analysis. The results show that China's export embodied energy intensity to developing countries, such as India, is higher than that of European and American countries; however, a convergence trend has emerged over time. Regarding the driving factors influencing changes in export embodied energy intensity over time, the sectoral energy intensity effect plays a pivotal role in promoting its decline, while the production structure and export structure effects change from inhibition to weak promotion. The adjustment of export structure has significant potential for reducing China's export embodied energy intensity, especially in emerging economies. Finally, this paper proposes policy directions for collaborative opening up, energy saving, and emission reduction goals.

Suggested Citation

  • Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023028
    DOI: 10.1016/j.energy.2024.132528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    3. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    4. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    5. Brian R. Copeland & M. Scott Taylor, 1994. "North-South Trade and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 755-787.
    6. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    7. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    8. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    9. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).
    10. Wenmei Kang & Mou Wang & Ying Chen & Ying Zhang, 2022. "Decoupling of the Growing Exports in Foreign Trade from the Declining Gross Exports of Embodied Energy," IJERPH, MDPI, vol. 19(15), pages 1-12, August.
    11. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Song & Wang, Zhenpo, 2023. "Identifying the key factors to China's unsustainable external circulation through the accounting of the flow of embodied energy and virtual water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    13. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    14. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    15. Yang, Yu & Zhou, Yannan & Shan, Yuli & Hubacek, Klaus, 2024. "The shift of embodied energy flows among the Global South and Global North in the post-globalisation era," Energy Economics, Elsevier, vol. 131(C).
    16. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    17. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    18. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    2. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    4. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    5. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    6. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    7. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    8. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    9. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    10. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    11. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    13. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    14. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    15. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    16. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    17. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    18. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    19. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    20. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.