IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10073-d455225.html
   My bibliography  Save this article

Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability

Author

Listed:
  • Wei Yang

    (Institute of Management and Decision, Shanxi University, Taiyuan 030006, China)

  • Zudi Lu

    (School of Mathematics Sciences & Southampton Statistical Sciences Research Institute, University of Southampton, Southampton SO17 1BJ, UK)

  • Di Wang

    (School of Government, Peking University, Beijing 100871, China)

  • Yanmin Shao

    (School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China)

  • Jinfeng Shi

    (School of Economics and Management, Shanxi University, Taiyuan 030006, China)

Abstract

The rapid economy expansion in China has substantially increased energy consumption. Under the stringent environmental policy and the requirement of green economy development, the accurate assessment and analysis of energy efficiency is an increasingly significant issue for energy development policy making in China. This study uses the weighted slacks-based model (weighted SBM) considering the energy substitutability to evaluate the regional energy efficiency (EE) in 29 Chinese provinces, from 1991 to 2015, and explores the sustainable evolution characteristics of EE by comparative and convergence analyses from different perspectives. The empirical results show that EE has significant geographic differences. On the one hand, EE increases from the west to the east of China, and its volatility has a rising trend over the period 1991–2015. Only the EE in the eastern area had a stable rising trend, and the EE differences are difficult to reduce in the short term. On the other hand, the economic zones in the south of China, such as Central Bohai, Pearl River Delta, and Yangtze River Delta, have higher EE. We also find a significant EE improvement occurred during the Eleventh and the Twelfth Five-Year plans. By means of the convergence analysis of energy efficiency across different areas and economic zones over different time intervals, it is shown that EE in the southeast coast provinces have a better catching-up effect and adjustment rate toward the efficient frontier, while the western inland provinces are less effective over the period 1991–2005. Further, we empirically find that the industry policies including industry transfer policy promote EE globally, but the regional differences and fluctuations in EE remain serious. Certain policy implications are discussed with regard to sustainable regional development and an effective industry transfer policy.

Suggested Citation

  • Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10073-:d:455225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    2. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    3. Li, Yong & Oberheitmann, Andreas, 2009. "Challenges of rapid economic growth in China: Reconciling sustainable energy use, environmental stewardship and social development," Energy Policy, Elsevier, vol. 37(4), pages 1412-1422, April.
    4. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    5. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    6. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
    7. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    8. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, vol. 6(8), pages 1-17, August.
    9. Gale A. Boyd, 2008. "Estimating Plant Level Energy Efficiency with a Stochastic Frontier," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-44.
    10. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    11. Jiang Du & Mengqin Zhao & Ming Zeng & Kezhen Han & Huaping Sun, 2020. "Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    12. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    13. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    14. Flannery, Mark J. & Rangan, Kasturi P., 2006. "Partial adjustment toward target capital structures," Journal of Financial Economics, Elsevier, vol. 79(3), pages 469-506, March.
    15. Siqin Xiong & Yushen Tian & Junping Ji & Xiaoming Ma, 2017. "Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    16. Arcelus, Francisco J. & Arocena, Pablo, 2000. "Convergence and productive efficiency in fourteen OECD countries: A non-parametric frontier approach," International Journal of Production Economics, Elsevier, vol. 66(2), pages 105-117, June.
    17. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    18. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    19. Shichun Xu & Yiwen Li & Yuan Tao & Yan Wang & Yunfan Li, 2020. "Regional Differences in the Spatial Characteristics and Dynamic Convergence of Environmental Efficiency in China," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    20. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    21. Yanmin Shao & Song Han, 2019. "The Synergy in the Economic Production System: An Empirical Study with Chinese Industry," Sustainability, MDPI, vol. 11(4), pages 1-12, February.
    22. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    23. Haixia Cai & Ruguo Fan, 2019. "Regional Total Factor Energy Efficiency Evaluation of China: The Perspective of Social Welfare," Sustainability, MDPI, vol. 11(15), pages 1-16, July.
    24. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    25. Baumol, William J, 1986. "Productivity Growth, Convergence, and Welfare: What the Long-run Data Show," American Economic Review, American Economic Association, vol. 76(5), pages 1072-1085, December.
    26. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    27. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    28. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    29. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    30. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    31. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    2. Cui Wang & Yingyan Zhang & Conghu Liu & Fagang Hu & Shuling Zhou & Juan Zhu, 2021. "Emergy-Based Assessment and Suggestions for Sustainable Development of Regional Ecological Economy: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    2. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    3. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    4. Lin Zhang and Philip Kofi Adom, 2018. "Energy Efficiency Transitions in China: How Persistent are the Movements to/from the Frontier?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    5. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    6. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    7. Xiong, Yongqing & Cheng, Qian, 2023. "Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances," Energy, Elsevier, vol. 281(C).
    8. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    9. Fan, Di & Peng, Bo & Wu, Jianxin & Zhang, ZhongXiang, 2024. "The convergence of total-factor energy efficiency across Chinese cities: A distribution dynamics approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 406-416.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    11. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    12. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    13. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    14. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    15. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    16. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    17. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    18. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    19. Georgia Makridou, Kostas Andriosopoulos, Michael Doumpos, and Constantin Zopounidis, 2015. "A Two-stage approach for energy efficiency analysis in European Union countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    20. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10073-:d:455225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.