IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p650-d73645.html
   My bibliography  Save this article

Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China

Author

Listed:
  • Shihong Zeng

    (Applied Economics Department, Economic Management School, Beijing University of Technology, Beijing 100124, China
    Finance and Economics Development Research Center, Economic Management School, Beijing University of Technology, Beijing 100124, China)

  • Jiuying Chen

    (Applied Economics Department, Economic Management School, Beijing University of Technology, Beijing 100124, China
    Finance and Economics Development Research Center, Economic Management School, Beijing University of Technology, Beijing 100124, China)

Abstract

Many countries and scholars have used various strategies to improve and optimize the allocation ratios for carbon emission allowances. This issue is more urgent for China due to the uneven development across the country. This paper proposes a new method that divides low-carbon economy development processes into two separate periods: from 2020 to 2029 and from 2030 to 2050. These two periods have unique requirements and emissions reduction potential; therefore, they must involve different allocation methods, so that reduction behaviors do not stall the development of regional low-carbon economies. During the first period, a more deterministic economic development approach for the carbon emission allowance allocation ratio should be used. During the second period, more adaptive and optimized policy guidance should be employed. We developed a low-carbon economy index evaluation system using the entropy weight method to measure information filtering levels. We conducted vector autoregressive correlation tests, consulted 60 experts for the fuzzy analytic hierarchy process, and we conducted max-min standardized data processing tests. This article presents first- and second-period carbon emission allowance models in combination with a low-carbon economy index evaluation system. Finally, we forecast reasonable carbon emission allowance allocation ratios for China for the periods starting in 2020 and 2030. A good allocation ratio for the carbon emission allowance can help boost China’s economic development and help the country reach its energy conservation and emissions reduction goals.

Suggested Citation

  • Shihong Zeng & Jiuying Chen, 2016. "Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China," Sustainability, MDPI, vol. 8(7), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:650-:d:73645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    2. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    3. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    4. Wei Wang & Hualin Xie & Tong Jiang & Daobei Zhang & Xue Xie, 2016. "Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    5. John S. Chipman & Guoqiang Tian, 2016. "Detrimental Externalities, Pollution Rights, and the “Coase Theorem”," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 473-492, Springer.
    6. Ellerman,A. Denny & Buchner,Barbara K. & Carraro,Carlo (ed.), 2007. "Allocation in the European Emissions Trading Scheme," Cambridge Books, Cambridge University Press, number 9780521875684, September.
    7. Shu-Kun Lin, 2011. "Social Sciences and Sustainability," Social Sciences, MDPI, vol. 1(1), pages 1-1, September.
    8. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.
    9. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, vol. 6(8), pages 1-17, August.
    10. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    11. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    12. Guiyang Zhuang, 2008. "How Will China Move towards Becoming a Low Carbon Economy?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 16(3), pages 93-105, May.
    13. Ruhul A. Salim & Shuddhasattwa Rafiq & A. F. M. Kamrul Hassan, 2008. "Causality And Dynamics Of Energy Consumption And Output: Evidence From Non-Oecd Asian Countries," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 33(2), pages 1-26, December.
    14. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    15. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    16. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon Seong Kim & Eun Jin Han & So Young Sohn, 2017. "Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    2. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    3. Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    4. Yuliia Matiiuk & Mykolas Simas Poškus & Genovaitė Liobikienė, 2020. "The Implementation of Climate Change Policy in Post-Soviet Countries Achieving Long-Term Targets," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    5. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    6. Siqin Xiong & Yushen Tian & Junping Ji & Xiaoming Ma, 2017. "Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    7. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Saiah, Saiah Bekkar Djelloul & Stambouli, Amine Boudghene, 2017. "Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 26-43.
    9. Sun Guoyan & Asadullah Khaskheli & Syed Ali Raza & Nida Shah, 2022. "Analyzing the association between the foreign direct investment and carbon emissions in MENA countries: a pathway to sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4226-4243, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    2. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    3. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    4. Yali Zhang & Yihan Wang & Xiaoshu Hou, 2019. "Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    5. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    6. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    7. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
    8. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    9. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    10. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    11. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    12. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    13. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    14. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
    15. Chen, Anping & Groenewold, Nicolaas, 2015. "Emission reduction policy: A regional economic analysis for China," Economic Modelling, Elsevier, vol. 51(C), pages 136-152.
    16. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    17. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    18. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    19. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:650-:d:73645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.