IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i6p1473-1486.html
   My bibliography  Save this article

Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus

Author

Listed:
  • David Font Vivanco
  • Ranran Wang
  • Edgar Hertwich

Abstract

The limited access to natural resources is a major constraint for sustainability at various spatial scales. This challenge has sparked scholarly interest in the linkages or nexus between resources, with a view to helping anticipate unforeseen consequences, identify trade‐offs and co‐benefits, and find optimal solutions. Yet, despite decades of research, limitations in the scope and focus of studies remain. Recently constructed multiregional input‐output (MRIO) databases, which cover the global economy and its use of resources in unprecedented detail, allow systematically investigation of resource use by production as well as consumption processes at various levels and garner new insights into global resource nexus (GRN) issues. This article addresses the question of how to prioritize such issues. Using the MRIO database, EXIOBASE, we address the GRN considering five key resources: blue water, primary energy, land, metal ores, and minerals. We propose a metric of nexus strength, which relies on linear goal programming to rank industries and products based on its associated combined resource use and various weighting schemes. Our results validate current research efforts by identifying water, energy, and land as the strongest linkages globally and at all scales and, at the same time, lead to novel findings into the GRN, in that (1) it appears stronger and more complex from the consumption perspective, (2) metals and minerals emerge as critical, yet undervalued, components, and (3) it manifests with a considerable diversity across countries owing to differences in the economic structure, domestic policy, technology, and resource endowments.

Suggested Citation

  • David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:6:p:1473-1486
    DOI: 10.1111/jiec.12704
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12704
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    2. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    3. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    4. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    5. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    6. Wang, Saige & Chen, Bin, 2016. "Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region," Applied Energy, Elsevier, vol. 178(C), pages 773-783.
    7. Eder, Peter & Narodoslawsky, Michael, 1999. "What environmental pressures are a region's industries responsible for? A method of analysis with descriptive indices and input-output models," Ecological Economics, Elsevier, vol. 29(3), pages 359-374, June.
    8. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    9. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    10. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    11. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    12. Feltrin, Andrea & Freundlich, Alex, 2008. "Material considerations for terawatt level deployment of photovoltaics," Renewable Energy, Elsevier, vol. 33(2), pages 180-185.
    13. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    14. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    15. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    16. Sovacool, Benjamin K. & Sovacool, Kelly E., 2009. "Identifying future electricity-water tradeoffs in the United States," Energy Policy, Elsevier, vol. 37(7), pages 2763-2773, July.
    17. Erik Dietzenbacher & Manfred Lenzen & Bart Los & Dabo Guan & Michael L. Lahr & Ferran Sancho & Sangwon Suh & Cuihong Yang, 2013. "Input--Output Analysis: The Next 25 Years," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 369-389, December.
    18. Hubacek, Klaus & Giljum, Stefan, 2003. "Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities," Ecological Economics, Elsevier, vol. 44(1), pages 137-151, February.
    19. Blanca Gallego & Manfred Lenzen, 2005. "A consistent input-output formulation of shared producer and consumer responsibility," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 365-391.
    20. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    21. Arnold Tukker & Erik Dietzenbacher, 2013. "Global Multiregional Input-Output Frameworks: An Introduction And Outlook," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 1-19, March.
    22. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    23. Jeong, Ki-Jun, 1984. "The relation between two different notions of direct and indirect input requirements," Journal of Macroeconomics, Elsevier, vol. 6(4), pages 473-476.
    24. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    25. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    26. Manfred Lenzen, 2011. "Aggregation Versus Disaggregation In Input-Output Analysis Of The Environment," Economic Systems Research, Taylor & Francis Journals, vol. 23(1), pages 73-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro Vozzella & Franco Ruzzenenti & Giampaolo Gabbi, 2019. "Energy and Environmental Flows: Do Most Financialised Countries within the Mediterranean Area Export Unsustainability?," Sustainability, MDPI, vol. 11(13), pages 1-15, July.
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    4. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    5. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    6. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
    7. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).
    8. Gilang Hardadi & Alexander Buchholz & Stefan Pauliuk, 2021. "Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 95-113, February.
    9. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    10. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    2. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    3. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    4. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    5. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    6. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    7. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    8. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    9. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    10. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    11. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    12. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    13. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    14. Viktoras Kulionis, 2018. "Constructing energy accounts for WIOD 2016 release," Papers 1810.07112, arXiv.org.
    15. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    16. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    17. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    18. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    19. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    20. Marin, Giovanni & Mazzanti, Massimiliano & Montini, Anna, 2012. "Linking NAMEA and Input output for ‘consumption vs. production perspective’ analyses," Ecological Economics, Elsevier, vol. 74(C), pages 71-84.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:6:p:1473-1486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.