An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113952
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.
- Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
- Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
- Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
- Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
- Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
- Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
- Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2015. "Exergy analysis of combustion in VGT-modified diesel engine with detailed chemical kinetics mechanism," Energy, Elsevier, vol. 93(P1), pages 740-748.
- Mahabadipour, Hamidreza & Srinivasan, Kalyan Kumar & Krishnan, Sundar Rajan & Subramanian, Swami Nathan, 2018. "Crank angle-resolved exergy analysis of exhaust flows in a diesel engine from the perspective of exhaust waste energy recovery," Applied Energy, Elsevier, vol. 216(C), pages 31-44.
- Saxena, Samveg & Shah, Nihar & Bedoya, Ivan & Phadke, Amol, 2014. "Understanding optimal engine operating strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis," Applied Energy, Elsevier, vol. 114(C), pages 155-163.
- Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
- Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
- Eyko Medeiros Rios & Danielle Rodrigues Moraes & Gisele Maria Ribeiro Vieira & Bárbara Noronha Gonçalves & Ronney Arismel Mancebo Boloy, 2022. "Dual-fuel compression-ignition engines fuelled with biofuels. A bibliometric review," Environment Systems and Decisions, Springer, vol. 42(1), pages 8-25, March.
- Motlagh, Tara Yazdani & Azadani, Leila N. & Yazdani, Kaveh, 2020. "Multi-objective optimization of diesel injection parameters in a natural gas/diesel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 279(C).
- Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
- Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Halis, Serdar & Doğan, Battal, 2023. "Effects of intake air temperature on energy, exergy and sustainability analyses in an RCCI engine fueled with iso-propanol and n-heptane," Energy, Elsevier, vol. 284(C).
- Ding, Botao & Wang, Ying & Bai, Yuanqi & Xie, Manyao & Chen, Jinge, 2024. "Effects of PODE substitution rate and fuel injection timing on combustion, emission characteristic and energy balance in PODE-gasoline dual direct-injection engine," Energy, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
- Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
- Eyal, Amnon & Tartakovsky, Leonid, 2020. "Second-law analysis of the reforming-controlled compression ignition," Applied Energy, Elsevier, vol. 263(C).
- Ma, Baodong & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Gao, Jian & Chen, Chao, 2020. "Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters," Applied Energy, Elsevier, vol. 261(C).
- Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
- Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
- Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
- Zhang, Xuan & Wei, Jianan & Liu, Haifeng & Cai, Yuqing & Wang, Hu & Yao, Mingfa, 2024. "The relationship between fuel reactivity and exergy features in combustion process," Energy, Elsevier, vol. 288(C).
- Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
- Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
- Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
- Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
- Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
- Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
- Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
- Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
- Halis, Serdar & Doğan, Battal, 2023. "Effects of intake air temperature on energy, exergy and sustainability analyses in an RCCI engine fueled with iso-propanol and n-heptane," Energy, Elsevier, vol. 284(C).
- Jafarmadar, Samad & Nemati, Peyman, 2016. "Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model," Renewable Energy, Elsevier, vol. 99(C), pages 514-523.
- Wei, Jianan & Liu, Haifeng & Zhu, Hongyan & Cai, Yuqing & Wang, Hu & Yao, Mingfa, 2023. "Energy analysis and optimization of iso-octane and n-heptane combustion process," Energy, Elsevier, vol. 262(PB).
- Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
More about this item
Keywords
Exergy analysis; Low temperature combustion; Efficiency; Dual fuel; Irreversibilities; Multi-zone simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.