IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v115y2022ics0140988322004637.html
   My bibliography  Save this article

Household carbon footprints inequality in China: Drivers, components and dynamics

Author

Listed:
  • Wang, Keying
  • Cui, Yongyan
  • Zhang, Hongwu
  • Shi, Xunpeng
  • Xue, Jinjun
  • Yuan, Zhao

Abstract

The significant achievements in economic growth and urbanization in China have recently led to substantial increases of and great inequality in household carbon footprints (HCFs). To achieve efficiency and justice in emissions reduction, policymakers need to fully understand the sources of HCFs and identify the major causes of carbon inequality. By applying the Unconditional Quantile Regression (UQR) model and decomposition method to the Chinese household survey data, this paper investigates the distributional features of HCFs and their determinants. We find that HCFs are unevenly distributed due to differences in the volume and pattern of consumption, which are further determined by household characteristics and lifestyles. The intertemporal lifestyle changes have played a major role in the rise of HCFs inequality measured by various quantile emissions differentials. In addition, considerable increases in HCFs come from the high carbon emission groups, and most of the HCFs inequality stems from the 90–50 emissions differential. To transform the current carbon-intensive economy, policies are required to enhance environmental equity and encourage low-carbon lifestyles.

Suggested Citation

  • Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004637
    DOI: 10.1016/j.eneco.2022.106334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Dabo Guan, 2017. "An index of inequality in China," Nature Energy, Nature, vol. 2(10), pages 774-775, October.
    3. Yu, Feng & Dong, Huijuan & Geng, Yong & Fang, Alex S. & Li, Haifeng, 2022. "Uncovering the differences of household carbon footprints and driving forces between China and Japan," Energy Policy, Elsevier, vol. 165(C).
    4. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    5. Siqi Zheng & Rui Wang & Edward L. Glaeser & Matthew E. Kahn, 2011. "The greenness of China: household carbon dioxide emissions and urban development," Journal of Economic Geography, Oxford University Press, vol. 11(5), pages 761-792, September.
    6. Gill, Bernhard & Moeller, Simon, 2018. "GHG Emissions and the Rural-Urban Divide. A Carbon Footprint Analysis Based on the German Official Income and Expenditure Survey," Ecological Economics, Elsevier, vol. 145(C), pages 160-169.
    7. Xunpeng Shi, 2013. "Spillover Effects of Carbon Footprint Labelling on Less Developed Countries: The Example of the East Asia Summit Region," Development Policy Review, Overseas Development Institute, vol. 31(3), pages 239-254, May.
    8. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    9. Chitnis, Mona & Druckman, Angela & Hunt, Lester C. & Jackson, Tim & Milne, Scott, 2012. "Forecasting scenarios for UK household expenditure and associated GHG emissions: Outlook to 2030," Ecological Economics, Elsevier, vol. 84(C), pages 129-141.
    10. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    11. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2010. "The impact of household consumption patterns on emissions in Spain," Energy Economics, Elsevier, vol. 32(1), pages 176-185, January.
    12. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    13. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    14. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    15. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    16. Bijan J. Borah & Anirban Basu, 2013. "Highlighting Differences Between Conditional And Unconditional Quantile Regression Approaches Through An Application To Assess Medication Adherence," Health Economics, John Wiley & Sons, Ltd., vol. 22(9), pages 1052-1070, September.
    17. Shi, Xunpeng, 2015. "Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam," Applied Energy, Elsevier, vol. 157(C), pages 1-12.
    18. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    19. Irfany, Mohammad Iqbal & Klasen, Stephan, 2017. "Affluence and emission tradeoffs: evidence from Indonesian households' carbon footprint," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 546-570, October.
    20. Vogt-Schilb, Adrien & Walsh, Brian & Feng, Kuishuang & Di Capua, Laura & Liu, Yu & Zuluaga, Daniela & Robles, Marcos & Hubacek, Klaus, 2019. "Cash Transfers for Pro-poor Carbon Taxes in Latin America and the Caribbean," IDB Publications (Working Papers) 9883, Inter-American Development Bank.
    21. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Publisher Correction: Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(4), pages 349-349, April.
    22. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    23. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    24. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    25. Chancel, Lucas, 2014. "Are younger generations higher carbon emitters than their elders?," Ecological Economics, Elsevier, vol. 100(C), pages 195-207.
    26. Paul de Boer & João F. D. Rodrigues, 2020. "Decomposition analysis: when to use which method?," Economic Systems Research, Taylor & Francis Journals, vol. 32(1), pages 1-28, January.
    27. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    28. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    29. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    30. Sergio Firpo & Cristine Pinto, 2016. "Identification and Estimation of Distributional Impacts of Interventions Using Changes in Inequality Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 457-486, April.
    31. Allinson, David & Irvine, Katherine N. & Edmondson, Jill L. & Tiwary, Abhishek & Hill, Graeme & Morris, Jonathan & Bell, Margaret & Davies, Zoe G. & Firth, Steven K. & Fisher, Jill & Gaston, Kevin J. , 2016. "Measurement and analysis of household carbon: The case of a UK city," Applied Energy, Elsevier, vol. 164(C), pages 871-881.
    32. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    33. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    34. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.
    35. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    36. Diana Ivanova & Konstantin Stadler & Kjartan Steen-Olsen & Richard Wood & Gibran Vita & Arnold Tukker & Edgar G. Hertwich, 2016. "Environmental Impact Assessment of Household Consumption," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 526-536, June.
    37. Adrien Vogt-Schilb & Brian Walsh & Kuishuang Feng & Laura Di Capua & Yu Liu & Daniela Zuluaga & Marcos Robles & Klaus Hubaceck, 2019. "Cash transfers for pro-poor carbon taxes in Latin America and the Caribbean," Nature Sustainability, Nature, vol. 2(10), pages 941-948, October.
    38. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(3), pages 231-239, March.
    39. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    40. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    41. Dominik Wiedenhofer & Dabo Guan & Zhu Liu & Jing Meng & Ning Zhang & Yi-Ming Wei, 2017. "Unequal household carbon footprints in China," Nature Climate Change, Nature, vol. 7(1), pages 75-80, January.
    42. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    43. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    44. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    45. Lyons, Seán & Pentecost, Anne & Tol, Richard S. J., 2012. "Socioeconomic Distribution of Emissions and Resource Use in Ireland," Papers WP426, Economic and Social Research Institute (ESRI).
    46. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    47. Choi, Kwangyul & Zhang, Ming, 2017. "The impact of metropolitan, county, and local land use on driving emissions in US metropolitan areas: Mediator effects of vehicle travel characteristics," Journal of Transport Geography, Elsevier, vol. 64(C), pages 195-202.
    48. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    49. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    50. Andersson, David & Nässén, Jonas & Larsson, Jörgen & Holmberg, John, 2014. "Greenhouse gas emissions and subjective well-being: An analysis of Swedish households," Ecological Economics, Elsevier, vol. 102(C), pages 75-82.
    51. Li, Xi & Ouyang, Zhigang & Zhang, Qiong & Shang, Wen-long & Huang, Liqiao & Wu, Yi & Gao, Yuning, 2022. "Evaluating food supply chain emissions from Japanese household consumption," Applied Energy, Elsevier, vol. 306(PB).
    52. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    53. Jeffrey Wilson & Peter Tyedmers & Jamie E. L. Spinney, 2013. "An Exploration of the Relationship between Socioeconomic and Well‐Being Variables and Household Greenhouse Gas Emissions," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 880-891, December.
    54. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    55. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    56. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    57. Ravallion, Martin & Heil, Mark & Jalan, Jyotsna, 2000. "Carbon Emissions and Income Inequality," Oxford Economic Papers, Oxford University Press, vol. 52(4), pages 651-669, October.
    58. Sommer, Mark & Kratena, Kurt, 2017. "The Carbon Footprint of European Households and Income Distribution," Ecological Economics, Elsevier, vol. 136(C), pages 62-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    2. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
    3. Gao, Xue & Chen, Xuan & Liu, Lan-Cui, 2024. "Exploring the determinants of the evolution of urban and rural household carbon footprints inequality in China," Energy Policy, Elsevier, vol. 185(C).
    4. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    2. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    3. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    4. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    5. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    6. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    7. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    8. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    9. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    10. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    11. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    12. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    13. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    14. Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
    15. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    16. An, Na & Huang, Chenyu & Shen, Yanting & Wang, Jinyu & Yu, Zhongqi & Fu, Jiayan & Liu, Xiao & Yao, Jiawei, 2024. "Efficient data-driven prediction of household carbon footprint in China with limited features," Energy Policy, Elsevier, vol. 185(C).
    17. Gao, Xue & Chen, Xuan & Liu, Lan-Cui, 2024. "Exploring the determinants of the evolution of urban and rural household carbon footprints inequality in China," Energy Policy, Elsevier, vol. 185(C).
    18. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    19. Du, Zhili & Xu, Jie & Lin, Boqiang, 2024. "What does the digital economy bring to household carbon emissions? – From the perspective of energy intensity," Applied Energy, Elsevier, vol. 370(C).
    20. Moises Neil V. Seriño, 2020. "Rising carbon footprint inequality in the Philippines," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 173-195, April.

    More about this item

    Keywords

    Household carbon footprints; Inequality; Lifestyle; Unconditional quantile regression; China;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • D10 - Microeconomics - - Household Behavior - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.