IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v133y2024ics014098832400272x.html
   My bibliography  Save this article

Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms

Author

Listed:
  • Ye, Tuo
  • Zhao, Songyu
  • Lau, Chi Keung Marco
  • Chau, Frankie

Abstract

Hydrogen energy is significant in the energy consumption, especially in Hydrogen Fuel Cell Vehicles(HFCVs) market. Social media data is critical for exploring public perceptions of HFCVs. To find hot topics and understand the public sentiment of HFCVs, we employ a computational model, which combines Kmeans algorithm, Latent Dirichlet Allocation (LDA), and SnowNLP. The training data consists of 42,063 comments sourced from Bilibili-a popular Chinese social media platform. The analysis has identified 12 clusters, each with distinct topics and sentiments. The results reveal that the Chinese public generally holds a neutral stance on the hydrogen energy market, while some stakeholders maintain a positive on the technology and development of HFCVs, but some concerns about the transportation and safety of hydrogen fuel. Furthermore, this study offers suggestions for the technological, operational, and strategic advancement of HFCVs.

Suggested Citation

  • Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:eneeco:v:133:y:2024:i:c:s014098832400272x
    DOI: 10.1016/j.eneco.2024.107564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832400272X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lei & Gao, Jing, 2016. "Exploring the effects of international tourism on China's economic growth, energy consumption and environmental pollution: Evidence from a regional panel analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 225-234.
    2. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    3. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    4. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    5. Lau, Chi Keung & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Li, Jing, 2023. "Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 122(C).
    6. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    7. Mourato, Susana & Saynor, Bob & Hart, David, 2004. "Greening London's black cabs: a study of driver's preferences for fuel cell taxis," Energy Policy, Elsevier, vol. 32(5), pages 685-695, March.
    8. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    9. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    10. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    11. Shunichi Hienuki & Yoshie Hirayama & Tadahiro Shibutani & Junji Sakamoto & Jo Nakayama & Atsumi Miyake, 2019. "How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    12. Naeem, Muhammad Abubakr & Appiah, Michael & Taden, John & Amoasi, Richard & Gyamfi, Bright Akwasi, 2023. "Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies," Energy Economics, Elsevier, vol. 127(PA).
    13. Kejun, Jiang & Chenmin, He & Songli, Zhu & Pianpian, Xiang & Sha, Chen, 2021. "Transport scenarios for China and the role of electric vehicles under global 2 °C/1.5 °C targets," Energy Economics, Elsevier, vol. 103(C).
    14. Shahbaz, Muhammad & Siddiqui, Aaliyah & Ahmad, Shabbir & Jiao, Zhilun, 2023. "Financial development as a new determinant of energy diversification: The role of natural capital and structural changes in Australia," Energy Economics, Elsevier, vol. 126(C).
    15. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    16. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    17. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    18. Sinha, Avik & Bekiros, Stelios & Hussain, Nazim & Nguyen, Duc Khuong & Khan, Sana Akbar, 2023. "How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?," Energy Economics, Elsevier, vol. 120(C).
    19. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    20. De Weerdt, Loïc & Oliveira, Carlos & Larson, Eric D. & Greig, Chris, 2023. "The interplay between technology options, market uncertainty, and policy in zero-carbon investment decisions," Energy Economics, Elsevier, vol. 128(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    2. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    3. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Hou, Yuqi, 2024. "AI and Nuclear: A perfect intersection of danger and potential?," Energy Economics, Elsevier, vol. 133(C).
    4. Jiao, Anqi & Lu, Juntai & Ren, Honglin & Wei, Jia, 2024. "The role of AI capabilities in environmental management: Evidence from USA firms," Energy Economics, Elsevier, vol. 134(C).
    5. Zhong, Yufei & Chen, Xuesheng & Wang, Zhixian & Lin, Regina Fang-Ying, 2024. "The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis," Energy Economics, Elsevier, vol. 132(C).
    6. Chishti, Muhammad Zubair & Xia, Xiqiang & Dogan, Eyup, 2024. "Understanding the effects of artificial intelligence on energy transition: The moderating role of Paris Agreement," Energy Economics, Elsevier, vol. 131(C).
    7. Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
    8. Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
    9. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    10. Tao, Weiliang & Weng, Shimei & Chen, Xueli & ALHussan, Fawaz Baddar & Song, Malin, 2024. "Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    11. Zhao, Qiuyun & Jiang, Mei & Zhao, Zuoxiang & Liu, Fan & Zhou, Li, 2024. "The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation," Energy Economics, Elsevier, vol. 133(C).
    12. Lee, Chi-Chuan & Fang, Yuzhu & Quan, Shiyun & Li, Xinghao, 2024. "Leveraging the power of artificial intelligence toward the energy transition: The key role of the digital economy," Energy Economics, Elsevier, vol. 135(C).
    13. Yang, Shengyao & Zhu, Meng Nan & Yu, Haiyan, 2024. "Are artificial intelligence and blockchain the key to unlocking the box of clean energy?," Energy Economics, Elsevier, vol. 134(C).
    14. Wei, Xun & Pal, Shreya & Mahalik, Mantu Kumar & Liu, Weibai, 2024. "The role of energy efficiency in income inequality dynamics in developing Asia: Evidence from artificial neural networks," Energy Economics, Elsevier, vol. 136(C).
    15. Wen, Jun & Yin, Hua-Tang & Chang, Chun-Ping & Tang, Kai, 2024. "How AI shapes greener futures: Comparative insights from equity vs debt investment responses in renewable energy," Energy Economics, Elsevier, vol. 136(C).
    16. Song, Malin & Pan, Heting & Shen, Zhiyang & Tamayo-Verleene, Kristine, 2024. "Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value," Energy Economics, Elsevier, vol. 131(C).
    17. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    18. Liu, Guangqiang & Xu, Weiju & Nguyen, Quang Minh, 2024. "Can the energy transition drive economic development? Empirical analysis of China's provincial panel data," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    19. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    20. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Ma, Xin, 2024. "The butterfly effect of cloud computing on the low-carbon economy," Technological Forecasting and Social Change, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:133:y:2024:i:c:s014098832400272x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.