Hansheng Wang
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Articles
- Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010.
"On sparse estimation for semiparametric linear transformation models,"
Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
Cited by:
- Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
- Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
- Li, Jianbo & Gu, Minggao & Zhang, Riquan, 2013. "Variable selection for general transformation models with right censored data via nonconcave penalties," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 445-456.
- Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
- Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
- Wang, Hansheng & Xia, Yingcun, 2009.
"Shrinkage Estimation of the Varying Coefficient Model,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
Cited by:
- Jia Chen & Degui Li & Lingling Wei & Wenyang Zhang, 2019.
"Nonparametric Homogeneity Pursuit in Functional-Coefficient Models,"
Discussion Papers
19/03, Department of Economics, University of York.
- Jia Chen & Degui Li & Lingling Wei & Wenyang Zhang, 2021. "Nonparametric homogeneity pursuit in functional-coefficient models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(3-4), pages 387-416, October.
- Wang, Weiwei & Wu, Xianyi & Zhao, Xiaobing & Zhou, Xian, 2018. "Robust variable selection of joint frailty model for panel count data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 60-78.
- Yan-Yong Zhao & Jin-Guan Lin & Hong-Xia Wang & Xing-Fang Huang, 2017. "Jump-detection-based estimation in time-varying coefficient models and empirical applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 574-599, September.
- Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
- Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
- Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
- Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
- Mingqiu Wang & Peixin Zhao & Xiaoning Kang, 2020. "Structure identification for varying coefficient models with measurement errors based on kernel smoothing," Statistical Papers, Springer, vol. 61(5), pages 1841-1857, October.
- Jun Zhang & Junpeng Zhu & Yan Zhou & Xia Cui & Tao Lu, 2020. "Multiplicative regression models with distortion measurement errors," Statistical Papers, Springer, vol. 61(5), pages 2031-2057, October.
- Aaron Hudson & Ali Shojaie, 2022. "Covariate-Adjusted Inference for Differential Analysis of High-Dimensional Networks," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 345-388, June.
- Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
- Yang, Bingduo & Hafner, Christian M. & Liu, Guannan & Long, Wei, 2018.
"Semiparametric Estimation and Variable Selection for Single-index Copula Models,"
IRTG 1792 Discussion Papers
2018-064, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Yang, Bingduo & Hafner, Christian M. & Liu, Guannan & Long, Wei, 2022. "Semiparametric estimation and variable selection for single-index copula models," LIDAM Reprints ISBA 2022011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2021. "Semiparametric estimation and variable selection for single‐index copula models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 962-988, November.
- Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2019. "Semiparametric Estimation and Variable Selection for Single-index Copula Models," Working Papers 2019-07-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Priyam Das & Christine B. Peterson & Yang Ni & Alexandre Reuben & Jiexin Zhang & Jianjun Zhang & Kim‐Anh Do & Veerabhadran Baladandayuthapani, 2023. "Bayesian hierarchical quantile regression with application to characterizing the immune architecture of lung cancer," Biometrics, The International Biometric Society, vol. 79(3), pages 2474-2488, September.
- Noh, Hohsuk & Chung, Kwanghun & Van Keilegom, Ingrid, 2012. "Variable Selection of Varying Coefficient Models in Quantile Regression," LIDAM Discussion Papers ISBA 2012020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Post-Print
hal-01954386, HAL.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
- Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
- Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
- Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015.
"A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks,"
Monash Econometrics and Business Statistics Working Papers
9/15, Monash University, Department of Econometrics and Business Statistics.
- Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
- Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
- Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
- Feng Li & Yajie Li & Sanying Feng, 2021. "Estimation for Varying Coefficient Models with Hierarchical Structure," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
- Peng, Bin, 2016. "Inference on modelling cross-sectional dependence for a varying-coefficient model," Economics Letters, Elsevier, vol. 145(C), pages 1-5.
- Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
- Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
- Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
- Arteaga-Molina, Luis A., 2019.
"Testing Constancy in Varying Coefficient Models,"
UC3M Working papers. Economics
27981, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Delgado, Miguel A. & Arteaga-Molina, Luis A., 2021. "Testing constancy in varying coefficient models," Journal of Econometrics, Elsevier, vol. 222(1), pages 625-644.
- Feng, Guohua & Gao, Jiti & Peng, Bin, 2022.
"An integrated panel data approach to modelling economic growth,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
- Guohua Feng & Jiti Gao & Bin Peng, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Papers 1903.07948, arXiv.org.
- Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
- Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
- Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
- Geng, Pei, 2022. "Estimation of functional-coefficient autoregressive models with measurement error," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
- Morteza Amini & Mahdi Roozbeh, 2019. "Improving the prediction performance of the LASSO by subtracting the additive structural noises," Computational Statistics, Springer, vol. 34(1), pages 415-432, March.
- Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
- Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Jia Chen, 2018.
"Estimating Latent Group Structure in Time-Varying Coefficient Panel Data Models,"
Discussion Papers
18/15, Department of Economics, University of York.
- Jia Chen, 2019. "Estimating latent group structure in time-varying coefficient panel data models," The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 223-240.
- Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2012. "Lazy lasso for local regression," Computational Statistics, Springer, vol. 27(3), pages 531-550, September.
- Huang, Zhensheng & Lin, Bingqing & Feng, Fan & Pang, Zhen, 2013. "Efficient penalized estimating method in the partially varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 189-200.
- Xiang-Jie Li & Xue-Jun Ma & Jing-Xiao Zhang, 2017. "Robust feature screening for varying coefficient models via quantile partial correlation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 17-49, January.
- Chaohui Guo & Hu Yang & Jing Lv, 2017. "Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression," Statistical Papers, Springer, vol. 58(4), pages 1009-1033, December.
- Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
- Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
- Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
- Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
- Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.
- Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
- Tianfa Xie & Ruiyuan Cao & Jiang Du, 2020. "Variable selection for spatial autoregressive models with a diverging number of parameters," Statistical Papers, Springer, vol. 61(3), pages 1125-1145, June.
- Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Jing Lv & Chaohui Guo & Jibo Wu, 2019. "Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 999-1032, September.
- Cai, Zongwu & Juhl, Ted & Yang, Bingduo, 2015. "Functional index coefficient models with variable selection," Journal of Econometrics, Elsevier, vol. 189(2), pages 272-284.
- Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
- Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
- Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
- Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
- Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
- Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
- Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
- Dewei Wang & Xichen Mou & Yan Liu, 2022. "Varying‐coefficient regression analysis for pooled biomonitoring," Biometrics, The International Biometric Society, vol. 78(4), pages 1328-1341, December.
- Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 36-48.
- Zhao, Yan-Yong & Lin, Jin-Guan & Huang, Xing-Fang & Wang, Hong-Xia, 2016. "Adaptive jump-preserving estimates in varying-coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 65-80.
- Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.
- Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
- Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
- Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
- Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
- Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
- Yueqin Wu & Yan Sun, 2017. "Shrinkage estimation of the linear model with spatial interaction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 51-68, January.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
- Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
- Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
- Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Zhou, Fei & Ren, Jie & Ma, Shuangge & Wu, Cen, 2023. "The Bayesian regularized quantile varying coefficient model," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
- Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
- Kangning Wang & Xiaofei Sun, 2020. "Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data," Statistical Papers, Springer, vol. 61(3), pages 967-995, June.
- Han, Xiaoyi & Peng, Bin & Yang, Yanrong & Zhu, Huanjun, 2021. "Shrinkage estimation of the varying-coefficient model with continuous and categorical covariates," Economics Letters, Elsevier, vol. 202(C).
- Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
- Lai, Peng & Meng, Jie & Lian, Heng, 2015. "Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 21-27.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
- Jia Chen & Degui Li & Lingling Wei & Wenyang Zhang, 2019.
"Nonparametric Homogeneity Pursuit in Functional-Coefficient Models,"
Discussion Papers
19/03, Department of Economics, University of York.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009.
"Shrinkage tuning parameter selection with a diverging number of parameters,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
Cited by:
- Shi Yafeng & Ai Chunrong & Yanlong Shi & Ying Tingting & Xu Qunfang, 2023. "Large covariance estimation using a factor model with common and group‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2217-2248, December.
- Lee, Seokho & Huang, Jianhua Z., 2013. "A coordinate descent MM algorithm for fast computation of sparse logistic PCA," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 26-38.
- Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
- Lee, Sangin & Kim, Yongdai & Kwon, Sunghoon, 2012. "Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1710-1717.
- Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
- Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
- Clifford Lam & Pedro C. L. Souza, 2016. "Detection and Estimation of Block Structure in Spatial Weight Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1347-1376, December.
- Yang, Xinfeng & Yan, Xiaodong & Huang, Jian, 2019. "High-dimensional integrative analysis with homogeneity and sparsity recovery," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
- Guo, Xiao & Chen, Yu & Tang, Cheng Yong, 2023. "Information criteria for latent factor models: A study on factor pervasiveness and adaptivity," Journal of Econometrics, Elsevier, vol. 233(1), pages 237-250.
- Minseog Oh & Donggyu Kim, 2024. "Property of Inverse Covariance Matrix-based Financial Adjacency Matrix for Detecting Local Groups," Papers 2412.05664, arXiv.org.
- Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
- Arief Gusnanto & Yudi Pawitan, 2015. "Sparse alternatives to ridge regression: a random effects approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 12-26, January.
- Börger, Matthias & Schupp, Johannes, 2018. "Modeling trend processes in parametric mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 369-380.
- Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
- Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
- Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
- Mehmet Caner & Xu Han & Yoonseok Lee, 2018.
"Adaptive Elastic Net GMM Estimation With Many Invalid Moment Conditions: Simultaneous Model and Moment Selection,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 24-46, January.
- Yoonseok Lee & Mehmet Caner & Xu Han, 2015. "Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Center for Policy Research Working Papers 177, Center for Policy Research, Maxwell School, Syracuse University.
- Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
- Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
- Joel L. Horowitz & Lars Nesheim, 2018.
"Using penalized likelihood to select parameters in a random coefficients multinomial logit model,"
CeMMAP working papers
CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joel L. Horowitz & Lars Nesheim, 2019. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP50/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Sheng, Tianhong & Li, Bing & Solea, Eftychia, 2023. "On skewed Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Mingli Chen & Kengo Kato & Chenlei Leng, 2021. "Analysis of networks via the sparse β‐model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 887-910, November.
- Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
- Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
- Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2017. "Regularized latent class analysis with application in cognitive diagnosis," LSE Research Online Documents on Economics 103182, London School of Economics and Political Science, LSE Library.
- Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
- Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
- Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
- Marina Friedrich & Luca Margaritella & Stephan Smeekes, 2023. "High-Dimensional Granger Causality for Climatic Attribution," Papers 2302.03996, arXiv.org, revised Jun 2024.
- Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Katayama, Shota & Imori, Shinpei, 2014. "Lasso penalized model selection criteria for high-dimensional multivariate linear regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 138-150.
- Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.
- Lian, Heng, 2012. "A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1224-1228.
- Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
- Donggyu Kim & Minseog Oh, 2024. "Property of Inverse Covariance Matrix-based Financial Adjacency Matrix for Detecting Local Groups," Working Papers 202420, University of California at Riverside, Department of Economics.
- Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
- Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
- Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
- Hou, Zhaohan & Wang, Lei, 2024. "Heterogeneous quantile regression for longitudinal data with subgroup structures," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Jiti Gao & Bin Peng & Yayi Yan, 2024. "Robust Inference for High-Dimensional Panel Data Models," Papers 2405.07420, arXiv.org, revised Aug 2024.
- Ziqi Chen & Jing Ning & Yu Shen & Jing Qin, 2021. "Combining primary cohort data with external aggregate information without assuming comparability," Biometrics, The International Biometric Society, vol. 77(3), pages 1024-1036, September.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
- Burman, Prabir & Paul, Debashis, 2017. "Smooth predictive model fitting in regression," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 165-179.
- Li, Gaorong & Xue, Liugen & Lian, Heng, 2011. "Semi-varying coefficient models with a diverging number of components," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1166-1174, August.
- Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
- Leng, Chenlei & Li, Bo, 2010. "Least squares approximation with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 254-261, February.
- Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
- Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
- Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Lam, Clifford & Souza, Pedro C.L., 2015. "Detection and estimation of block structure in spatial weight matrix," LSE Research Online Documents on Economics 59898, London School of Economics and Political Science, LSE Library.
- Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
- Li, Jun & Wang, Huijun & Yu, Jianfeng, 2021. "Aggregate expected investment growth and stock market returns," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 618-638.
- Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
- Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.
- Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Zhentao Shi, 2016. "Estimation of Sparse Structural Parameters with Many Endogenous Variables," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1582-1608, December.
- Jianfeng Wei & Jian Yang & Xuewen Cheng & Jie Ding & Shengquan Li, 2023. "Adaptive Regression Analysis of Heterogeneous Data Streams via Models with Dynamic Effects," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
- Mihoci, Andrija & Althof, Michael & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2019. "FRM Financial Risk Meter," IRTG 1792 Discussion Papers 2019-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Abdul Wahid & Dost Muhammad Khan & Ijaz Hussain, 2017. "Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
- Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Guo-Liang Tian & Mingqiu Wang & Lixin Song, 2014. "Variable selection in the high-dimensional continuous generalized linear model with current status data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 467-483, March.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
- Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
- Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Ngai Hang Chan & Ye Lu & Chun Yip Yau, 2017. "Factor Modelling for High-Dimensional Time Series: Inference and Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 285-307, March.
- Lin, Hongmei & Lian, Heng & Liang, Hua, 2019. "Rank reduction for high-dimensional generalized additive models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 672-684.
- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Baihua He & Tingyan Zhong & Jian Huang & Yanyan Liu & Qingzhao Zhang & Shuangge Ma, 2021. "Histopathological imaging‐based cancer heterogeneity analysis via penalized fusion with model averaging," Biometrics, The International Biometric Society, vol. 77(4), pages 1397-1408, December.
- Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
- Ziqi Chen & Man-Lai Tang & Wei Gao & Ning-Zhong Shi, 2014. "New Robust Variable Selection Methods for Linear Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 725-741, September.
- Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers CWP35/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Fei Wang & Lu Wang & Peter X.‐K. Song, 2016. "Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements," Biometrics, The International Biometric Society, vol. 72(4), pages 1184-1193, December.
- Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
- Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
- Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
- Huiwen Wang & Ruiping Liu & Shanshan Wang & Zhichao Wang & Gilbert Saporta, 2020. "Ultra-high dimensional variable screening via Gram–Schmidt orthogonalization," Computational Statistics, Springer, vol. 35(3), pages 1153-1170, September.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
- Wang, Hansheng & Leng, Chenlei, 2008.
"A note on adaptive group lasso,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
Cited by:
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Di Caterina, Claudia & Ferrari, Davide, 2024. "Model selection by pathwise marginal likelihood thresholding," Statistics & Probability Letters, Elsevier, vol. 214(C).
- Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Matteo Mogliani & Anna Simoni, 2020.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Post-Print
hal-03089878, HAL.
- Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
- Lu, Yisha & Hu, Yaozhong & Qiao, Yan & Yuan, Minjuan & Xu, Wei, 2024. "Sparse least squares via fractional function group fractional function penalty for the identification of nonlinear dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
- Liang Liang & Jue Hou & Hajime Uno & Kelly Cho & Yanyuan Ma & Tianxi Cai, 2022. "Semi-supervised approach to event time annotation using longitudinal electronic health records," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 428-491, July.
- Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
- Beran, Rudolf, 2014. "Hypercube estimators: Penalized least squares, submodel selection, and numerical stability," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 654-666.
- Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
- Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
- Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
- Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
- Min, Aleksey & Holzmann, Hajo & Czado, Claudia, 2010. "Model selection strategies for identifying most relevant covariates in homoscedastic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3194-3211, December.
- Xue Wu & Chixiang Chen & Zheng Li & Lijun Zhang & Vernon M. Chinchilli & Ming Wang, 2024. "A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 863-883, July.
- Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020.
"Sparse time-varying parameter VECMs with an application to modeling electricity prices,"
Papers
2011.04577, arXiv.org, revised Apr 2023.
- Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
- Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
- Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
- Ren, Yunwen & Xiao, Zhiguo & Zhang, Xinsheng, 2013. "Two-step adaptive model selection for vector autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 349-364.
- Ho, Lam Si Tung & Dinh, Vu, 2022. "Searching for minimal optimal neural networks," Statistics & Probability Letters, Elsevier, vol. 183(C).
- Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
- Xun Lu & Su Liangjun, 2015.
"Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects,"
Working Papers
02-2015, Singapore Management University, School of Economics.
- Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Yanhang Zhang & Junxian Zhu & Jin Zhu & Xueqin Wang, 2023. "A Splicing Approach to Best Subset of Groups Selection," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 104-119, January.
- Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
- Caiya Zhang & Yanbiao Xiang, 2016. "On the oracle property of adaptive group Lasso in high-dimensional linear models," Statistical Papers, Springer, vol. 57(1), pages 249-265, March.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Gerhard Tutz & Margret-Ruth Oelker, 2017. "Modelling Clustered Heterogeneity: Fixed Effects, Random Effects and Mixtures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 204-227, August.
- Mingqiu Wang & Guo-Liang Tian, 2019. "Adaptive group Lasso for high-dimensional generalized linear models," Statistical Papers, Springer, vol. 60(5), pages 1469-1486, October.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
- Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
- Liu, Xianhui & Wang, Zhanfeng & Wu, Yaohua, 2013. "Group variable selection and estimation in the tobit censored response model," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 80-89.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Bastien Marquis & Maarten Jansen, 2022. "Information criteria bias correction for group selection," Statistical Papers, Springer, vol. 63(5), pages 1387-1414, October.
- Heewon Park & Fumitake Sakaori, 2013. "Lag weighted lasso for time series model," Computational Statistics, Springer, vol. 28(2), pages 493-504, April.
- Gabriela Ciuperca, 2019. "Adaptive group LASSO selection in quantile models," Statistical Papers, Springer, vol. 60(1), pages 173-197, February.
- Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
- Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
- Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
- Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
- Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
- Guo, Xiao & Zhang, Hai & Wang, Yao & Wu, Jiang-Lun, 2015. "Model selection and estimation in high dimensional regression models with group SCAD," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 86-92.
- Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
- Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
- Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
- Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
- Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
- Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
- Da Huang & Hansheng Wang & Qiwei Yao, 2008.
"Estimating GARCH models: when to use what?,"
Econometrics Journal, Royal Economic Society, vol. 11(1), pages 27-38, March.
Cited by:
- Ken Miyajima, 2020.
"Exchange rate volatility and pass‐through to inflation in South Africa,"
African Development Review, African Development Bank, vol. 32(3), pages 404-418, September.
- Mr. Ken Miyajima, 2019. "Exchange Rate Volatility and Pass-Through to Inflation in South Africa," IMF Working Papers 2019/277, International Monetary Fund.
- Bonsoo Koo & Oliver Linton, 2013.
"Let's get LADE: robust estimation of semiparametric multiplicative volatility models,"
CeMMAP working papers
CWP11/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers 11/13, Institute for Fiscal Studies.
- Koo, Bonsoo & Linton, Oliver, 2015. "Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 671-702, August.
- PREMINGER Arie & STORTI Giuseppe, 2017.
"Least squares estimation for GARCH (1,1) model with heavy tailed errors,"
LIDAM Discussion Papers CORE
2017015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
- Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
- M. Angeles Carnero Fernández & Ana Pérez Espartero, 2018.
"Outliers and misleading leverage effect in asymmetric GARCH-type models,"
Working Papers. Serie AD
2018-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Carnero M. Angeles & Pérez Ana, 2021. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-19, February.
- Meintanis, Simos G. & Tsionas, Efthimios, 2010. "Testing for the generalized normal-Laplace distribution with applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3174-3180, December.
- M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
- De Santis, Paola & Drago, Carlo, 2014. "Asimmetria del rischio sistematico dei titoli immobiliari americani: nuove evidenze econometriche [Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence]," MPRA Paper 59381, University Library of Munich, Germany.
- Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
- Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
- Ken Miyajima, 2020.
"Exchange rate volatility and pass‐through to inflation in South Africa,"
African Development Review, African Development Bank, vol. 32(3), pages 404-418, September.
- Ronghua Luo & Hansheng Wang, 2008.
"A composite logistic regression approach for ordinal panel data regression,"
International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 1(1), pages 29-43.
Cited by:
- Owen P. Hall Jr. & Darrol J. Stanley, 2012. "A comparative modelling analysis of firm performance," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 4(1), pages 43-56.
- Meena Badade & T. V. Ramanathan, 2020. "Probabilistic frontier regression model for multinomial ordinal type output data," Journal of Productivity Analysis, Springer, vol. 53(3), pages 339-354, June.
- Wang, Hansheng & Xia, Yingcun, 2008.
"Sliced Regression for Dimension Reduction,"
Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
Cited by:
- Li-Ping Zhu & Li-Xing Zhu, 2009. "A data-adaptive hybrid method for dimension reduction," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 851-861.
- Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
- Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
- Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
- Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Shin, Seung Jun & Artemiou, Andreas, 2017. "Penalized principal logistic regression for sparse sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 48-58.
- Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
- Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
- Brian J. Reich & Howard D. Bondell & Lexin Li, 2011. "Sufficient Dimension Reduction via Bayesian Mixture Modeling," Biometrics, The International Biometric Society, vol. 67(3), pages 886-895, September.
- Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
- Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
- Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
- Stephen Babos & Andreas Artemiou, 2021. "Cumulative Median Estimation for Sufficient Dimension Reduction," Stats, MDPI, vol. 4(1), pages 1-8, February.
- Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Ming‐Yueh Huang & Kwun Chuen Gary Chan, 2024. "Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1567-1586, December.
- Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
- Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
- Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
- Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.
- Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
- Zhao, Xiaobing & Zhou, Xian, 2014. "Sufficient dimension reduction on marginal regression for gaps of recurrent events," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 56-71.
- Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Xue, Yuan & Zhang, Nan & Yin, Xiangrong & Zheng, Haitao, 2017. "Sufficient dimension reduction using Hilbert–Schmidt independence criterion," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 67-78.
- Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.
- Qian Jiang & Hansheng Wang & Yingcun Xia & Guohua Jiang, 2013. "On a Principal Varying Coefficient Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 228-236, March.
- Zhang, Jing & Wang, Qin & Mays, D'Arcy, 2021. "Robust MAVE through nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Zhu, Xuehu & Guo, Xu & Wang, Tao & Zhu, Lixing, 2020. "Dimensionality determination: A thresholding double ridge ratio approach," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
- Soale, Abdul-Nasah, 2023. "Projection expectile regression for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Tianqing Liu & Danning Li & Fengjiao Ren & Jianguo Sun & Xiaohui Yuan, 2024. "A new sufficient dimension reduction method via rank divergence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 921-950, September.
- Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
- Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
- Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.
- Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
- Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
- Jiang, Guohua & Wang, Hansheng, 2008.
"Should earnings thresholds be used as delisting criteria in stock market?,"
Journal of Accounting and Public Policy, Elsevier, vol. 27(5), pages 409-419.
Cited by:
- Sun, Zeyu & Kong, Ningning & Wu, Lei & Bao, Yu, 2024. "Does contingent payment in M&As induce acquirers’ earnings management? Evidence from performance commitment," Research in International Business and Finance, Elsevier, vol. 69(C).
- Xuezhou Zhao & Libing Fang & Ke Zhang, 2022. "How Foreign Institutional Shareholders' Religious Beliefs Affect Corporate Social Performance?," Journal of Business Ethics, Springer, vol. 178(2), pages 377-401, June.
- Sheng, Jie & Lan, Hao, 2019. "Business failure and mass media: An analysis of media exposure in the context of delisting event," Journal of Business Research, Elsevier, vol. 97(C), pages 316-323.
- Xingqiang Du & Jianying Weng & Quan Zeng & Hongmei Pei, 2017. "Culture, Marketization, and Owner-Manager Agency Costs: A Case of Merchant Guild Culture in China," Journal of Business Ethics, Springer, vol. 143(2), pages 353-386, June.
- Li, Leye & Monroe, Gary S. & Wang, Jenny Jing, 2021. "State ownership and abnormal accruals in highly-valued firms: Evidence from China," Journal of Contemporary Accounting and Economics, Elsevier, vol. 17(1).
- Li, Yuanhui & Li, Xiao & Xiang, Erwei & Geri Djajadikerta, Hadrian, 2020. "Financial distress, internal control, and earnings management: Evidence from China," Journal of Contemporary Accounting and Economics, Elsevier, vol. 16(3).
- Ruxi Wang & Frank Wijen & Pursey P.M.A.R. Heugens, 2018. "Government's green grip: Multifaceted state influence on corporate environmental actions in China," Strategic Management Journal, Wiley Blackwell, vol. 39(2), pages 403-428, February.
- Xingqiang Du, 2014. "Does Religion Mitigate Tunneling? Evidence from Chinese Buddhism," Journal of Business Ethics, Springer, vol. 125(2), pages 299-327, December.
- Jin-hui Luo & Zeyue Huang & Ruichao Zhu, 2021. "Does media coverage help firms “lobby” for government subsidies? Evidence from China," Asia Pacific Journal of Management, Springer, vol. 38(1), pages 259-290, March.
- Ku He & Xiaofei Pan & Gary Tian, 2017. "Legal Liability, Government Intervention, and Auditor Behavior: Evidence from Structural Reform of Audit Firms in China," European Accounting Review, Taylor & Francis Journals, vol. 26(1), pages 61-95, January.
- Shan Xue & Yuehua Xu & Honghui Chen, 2024. "Corporate social performance feedback and corporate social responsibility decoupling in China: The salience of legitimacy and/or efficiency," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 3164-3180, July.
- Martua Eliakim Tambunan & Hermanto Siregar & Adler Haymans Manurung & Dominicus Savio Priyarsono, 2017. "Related Party Transactions and Firm Value in the Business Groups in the Indonesia Stock Exchange," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(3), pages 1-1.
- Alex Chu & Xingqiang Du & Guohua Jiang, 2011. "Buy, Lie, or Die: An Investigation of Chinese ST Firms’ Voluntary Interim Audit Motive and Auditor Independence," Journal of Business Ethics, Springer, vol. 102(1), pages 135-153, August.
- Jiandong Chen & Rong Ding & Wenxuan Hou & Sofia Johan, 2016. "Do Financial Analysts Perform a Monitoring Role in China? Evidence from Modified Audit Opinions," Abacus, Accounting Foundation, University of Sydney, vol. 52(3), pages 473-500, September.
- Xingqiang Du & Wei Jian & Shaojuan Lai & Yingjie Du & Hongmei Pei, 2015. "Does Religion Mitigate Earnings Management? Evidence from China," Journal of Business Ethics, Springer, vol. 131(3), pages 699-749, October.
- Xingqiang Du & Shaojuan Lai, 2018. "Financial Distress, Investment Opportunity, and the Contagion Effect of Low Audit Quality: Evidence from China," Journal of Business Ethics, Springer, vol. 147(3), pages 565-593, February.
- Wei Liu & Qiao Wei & Song-Qin Huang & Sang-Bing Tsai, 2017. "Doing Good Again? A Multilevel Institutional Perspective on Corporate Environmental Responsibility and Philanthropic Strategy," IJERPH, MDPI, vol. 14(10), pages 1-15, October.
- Shi, Wenxiang & Fang, Peijie, 2023. "Delisting regulation and corporate financialization: Evidence from China," Finance Research Letters, Elsevier, vol. 58(PD).
- Liu, Xiaoqun & Zhang, Yuchen & Tian, Mengqiao & Chao, Youcong, 2023. "Financial distress and jump tail risk: Evidence from China's listed companies," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 316-336.
- Baolei Qi & Rong Yang & Gaoliang Tian, 2014. "Can media deter management from manipulating earnings? Evidence from China," Review of Quantitative Finance and Accounting, Springer, vol. 42(3), pages 571-597, April.
- Tao Huang & Xueyong Zhang, 2022. "Media coverage of industry and the cross‐section of stock returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1107-1141, April.
- Xingqiang Du, 2013. "Does Religion Matter to Owner-Manager Agency Costs? Evidence from China," Journal of Business Ethics, Springer, vol. 118(2), pages 319-347, December.
- Jiandong Chen & Douglas Cumming & Wenxuan Hou & Edward Lee, 2016. "Does the External Monitoring Effect of Financial Analysts Deter Corporate Fraud in China?," Journal of Business Ethics, Springer, vol. 134(4), pages 727-742, April.
- Xingqiang Du, 2015. "Does Confucianism Reduce Minority Shareholder Expropriation? Evidence from China," Journal of Business Ethics, Springer, vol. 132(4), pages 661-716, December.
- Yusi Jiang & Tianyu Gong & Wan Cheng & Yapu Zhao, 2023. "Repression or indulgence? Distinctive government influence on firm financial and environmental misconduct in China," Asian Business & Management, Palgrave Macmillan, vol. 22(1), pages 379-402, February.
- Tan, Youchao & Zhu, Zhenmei & Zeng, Cheng & Gao, Minghua, 2014. "Does external finance pressure affect corporate disclosure of Chinese non-state-owned enterprises?," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 212-222.
- Xingqiang Du, 2016. "Does Confucianism Reduce Board Gender Diversity? Firm-Level Evidence from China," Journal of Business Ethics, Springer, vol. 136(2), pages 399-436, June.
- DeFond, Mark & Li, Zengquan & Wong, T.J. & Wu, Kaiwen, 2024. "Competence vs. Independence: Auditors' connections with members of their clients’ business community," Journal of Accounting and Economics, Elsevier, vol. 78(1).
- Han Jiang & Albert A. Cannella Jr. & Jun Xia & Matthew Semadeni, 2017. "Choose to Fight or Choose to Flee? A Network Embeddedness Perspective of Executive Ship Jumping in Declining Firms," Strategic Management Journal, Wiley Blackwell, vol. 38(10), pages 2061-2079, October.
- Jiandong Chen & Douglas Cumming & Wenxuan Hou & Edward Lee, 2016. "CEO Accountability for Corporate Fraud: Evidence from the Split Share Structure Reform in China," Journal of Business Ethics, Springer, vol. 138(4), pages 787-806, November.
- Frost, Carol Ann & Guragai, Binod & Rapley, Eric T., 2017. "Differences in responses to accounting-based and market-based benchmarks – Evidence from Nasdaq," Advances in accounting, Elsevier, vol. 38(C), pages 46-62.
- Haoqiang Yuan & Haiyan Luan & Xi Wang, 2024. "The Impact of ESG Rating Events on Corporate Green Technology Innovation under Sustainable Development: Perspectives Based on Informal Environmental Regulation of Social Systems," Sustainability, MDPI, vol. 16(19), pages 1-26, September.
- Lisic, Ling Lei & Silveri, Sabatino (Dino) & Song, Yanheng & Wang, Kun, 2015. "Accounting fraud, auditing, and the role of government sanctions in China," Journal of Business Research, Elsevier, vol. 68(6), pages 1186-1195.
- Liping Xu & Shuxia Zhang & Ning Liu & Li Chen, 2018. "Corporate Hypocrisy: Role of Non-Profit Corporate Foundations in Earnings Management of For-Profit Founder Firms," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
- Aljughaiman, Abdullah A. & Nguyen, Tam Huy & Trinh, Vu Quang & Du, Anqi, 2023. "The Covid-19 outbreak, corporate financial distress and earnings management," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Brent Lao & Sheng Yi, 2021. "Financial misreporting and peer firms' operational efficiency," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 387-413, March.
- Kuo, Jing-Ming & Ning, Lutao & Song, Xiaoqi, 2014. "The Real and Accrual-based Earnings Management Behaviors: Evidence from the Split Share Structure Reform in China," The International Journal of Accounting, Elsevier, vol. 49(1), pages 101-136.
- Zhang, Han & Li, Minghui & Yang, Yujie, 2024. "Does common institutional ownership constrain related party transactions? Evidence from China," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1015-1042.
- Phuong Nguyen Trang Doan, 2024. "The Effects of Governance-Related Regulatory Reform: Ownership Structure and Earnings Management in Vietnamese Listed Firms," Indian Journal of Corporate Governance, , vol. 17(2), pages 272-299, December.
- Peng, Winnie Qian & Wei, K.C. John & Yang, Zhishu, 2011. "Tunneling or propping: Evidence from connected transactions in China," Journal of Corporate Finance, Elsevier, vol. 17(2), pages 306-325, April.
- Zhihong Mao & Siyang Wang & Yu‐En Lin, 2024. "ESG, ESG rating divergence and earnings management: Evidence from China," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 3328-3347, July.
- Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007.
"Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
Cited by:
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
- Elyasiani, Elyas & Movaghari, Hadi, 2022. "Determinants of corporate cash holdings: An application of a robust variable selection technique," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 967-993.
- Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
- Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
- Yang, Xuzhi & Wang, Tengyao, 2024. "Multiple-output composite quantile regression through an optimal transport lens," LSE Research Online Documents on Economics 125589, London School of Economics and Political Science, LSE Library.
- Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
- Yi Chu & Lu Lin, 2020. "Conditional SIRS for nonparametric and semiparametric models by marginal empirical likelihood," Statistical Papers, Springer, vol. 61(4), pages 1589-1606, August.
- R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
- Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
- UÄŸur Åžener & Salvatore Joseph Terregrossa, 2024. "A Transcendental LASSO Function for Combining Machine Learning and Statistical Model Forecasts," SAGE Open, , vol. 14(3), pages 21582440241, August.
- Weiyan Mu & Shifeng Xiong, 2014. "Some notes on robust sure independence screening," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2092-2102, October.
- Zangin Zeebari, 2012. "Developing ridge estimation method for median regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2627-2638, August.
- Benoit, Dries F. & Van den Poel, Dirk, 2017. "bayesQR: A Bayesian Approach to Quantile Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i07).
- Sardy, Sylvain & Diaz-Rodriguez, Jairo & Giacobino, Caroline, 2022. "Thresholding tests based on affine LASSO to achieve non-asymptotic nominal level and high power under sparse and dense alternatives in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
- Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
- Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
- Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
- Can Wu & Ying Cui & Donghui Li & Defeng Sun, 2023. "Convex and Nonconvex Risk-Based Linear Regression at Scale," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 797-816, July.
- Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
- Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.
- Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
- Victor Oluwafemi Olorunsola & Mehmet Bahri Saydam & Hasan Evrim Arici & Mehmet Ali Köseoglu, 2024. "The predictive roles of financial indicators and governance scores on firms’ emission performance in the tourism and hospitality industry," Tourism Economics, , vol. 30(6), pages 1382-1403, September.
- Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Dongxiao Han & Miao Han & Jian Huang & Yuanyuan Lin, 2023. "Robust inference for high‐dimensional single index models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1590-1615, December.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
- Farnè, Matteo & Vouldis, Angelos T., 2018. "A methodology for automised outlier detection in high-dimensional datasets: an application to euro area banks' supervisory data," Working Paper Series 2171, European Central Bank.
- Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
- Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
- Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
- Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
- Kadriye Hilal Topal & Ebru Çağlayan Akay, 2020. "Hanehalkı Tüketim Harcamalarının Mikroekonometrik Analizi: LAD-LASSO Yöntemi," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(33), pages 13-31, December.
- Lan Wang & Runze Li, 2009. "Weighted Wilcoxon-Type Smoothly Clipped Absolute Deviation Method," Biometrics, The International Biometric Society, vol. 65(2), pages 564-571, June.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
- Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
- Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.
- Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
- Barrera, Carlos R., 2011. "Impacto amplificador del ajuste de inventarios ante choques de demanda según especificaciones flexibles," Working Papers 2011-009, Banco Central de Reserva del Perú.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Adewale Folaranmi Lukman & Jeza Allohibi & Segun Light Jegede & Emmanuel Taiwo Adewuyi & Segun Oke & Abdulmajeed Atiah Alharbi, 2023. "Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data," Mathematics, MDPI, vol. 11(23), pages 1-11, November.
- Jiali Zheng & Xiyang Wang, 2022. "Estimation for a Class of Semiparametric Pareto Mixture Densities," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 609-627, August.
- Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
- Elena McDonald & Xin Wang, 2024. "Generalized regression estimators with concave penalties and a comparison to lasso type estimators," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 213-239, August.
- T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
- Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Gijbels, I. & Vrinssen, I., 2015. "Robust nonnegative garrote variable selection in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 1-22.
- Qiang Li & Liming Wang, 2020. "Robust change point detection method via adaptive LAD-LASSO," Statistical Papers, Springer, vol. 61(1), pages 109-121, February.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
- Junlong Zhao & Chao Liu & Lu Niu & Chenlei Leng, 2019. "Multiple influential point detection in high dimensional regression spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 385-408, April.
- Tianfa Xie & Ruiyuan Cao & Jiang Du, 2020. "Variable selection for spatial autoregressive models with a diverging number of parameters," Statistical Papers, Springer, vol. 61(3), pages 1125-1145, June.
- Wang, Chuchu & Song, Xinyuan, 2024. "Nonparametric quantile scalar-on-image regression," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
- Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
- Yafen Ye & Renyong Chi & Yuan-Hai Shao & Chun-Na Li & Xiangyu Hua, 2022. "Indicator Selection of Index Construction by Adaptive Lasso with a Generic $$\varepsilon $$ ε -Insensitive Loss," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 971-990, October.
- Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
- Chen, Huangyue & Kong, Lingchen & Shang, Pan & Pan, Shanshan, 2020. "Safe feature screening rules for the regularized Huber regression," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Kepplinger, David, 2023. "Robust variable selection and estimation via adaptive elastic net S-estimators for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
- Yongshi Liu & Xiaodong Yu & Jianjun Zhao & Changchun Pan & Kai Sun, 2022. "Development of a Robust Data-Driven Soft Sensor for Multivariate Industrial Processes with Non-Gaussian Noise and Outliers," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
- Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
- Christophe Croux & Peter Exterkate, 2011. "Sparse and Robust Factor Modelling," Tinbergen Institute Discussion Papers 11-122/4, Tinbergen Institute.
- Abdul Wahid & Dost Muhammad Khan & Ijaz Hussain, 2017. "Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
- Jiaming Luan & Hongwei Wang & Kangning Wang & Benle Zhang, 2022. "Robust distributed estimation and variable selection for massive datasets via rank regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 435-450, June.
- Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
- Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
- Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
- Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Barrera, Carlos, 2010. "¿Respuesta asimétrica de precios domésticos de combustibles ante choques en el WTI?," Working Papers 2010-016, Banco Central de Reserva del Perú.
- Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
- Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
- Li, Mei & Kong, Lingchen, 2019. "Double fused Lasso penalized LAD for matrix regression," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 119-138.
- Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
- Shiyi Tu & Min Wang & Xiaoqian Sun, 2017. "Bayesian variable selection and estimation in maximum entropy quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 253-269, January.
- Ziqi Chen & Man-Lai Tang & Wei Gao & Ning-Zhong Shi, 2014. "New Robust Variable Selection Methods for Linear Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 725-741, September.
- Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.
- Wang, Hansheng & Leng, Chenlei, 2007.
"Unified LASSO Estimation by Least Squares Approximation,"
Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
Cited by:
- Zou, Changliang & Chen, Xin, 2012. "On the consistency of coordinate-independent sparse estimation with BIC," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 248-255.
- Kwon, Sunghoon & Choi, Hosik & Kim, Yongdai, 2011. "Quadratic approximation on SCAD penalized estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 421-428, January.
- Jessica Gronsbell & Jessica Minnier & Sheng Yu & Katherine Liao & Tianxi Cai, 2019. "Automated feature selection of predictors in electronic medical records data," Biometrics, The International Biometric Society, vol. 75(1), pages 268-277, March.
- Lee, Sangin & Kim, Yongdai & Kwon, Sunghoon, 2012. "Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1710-1717.
- Ruosha Li & Limin Peng, 2017. "Assessing quantile prediction with censored quantile regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 517-528, June.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Wei Qian & Yuhong Yang, 2013. "Model selection via standard error adjusted adaptive lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 295-318, April.
- Schneider Ulrike & Wagner Martin, 2012.
"Catching Growth Determinants with the Adaptive Lasso,"
German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
- Ulrike Schneider & Martin Wagner, 2009. "Catching Growth Determinants with the Adaptive Lasso," wiiw Working Papers 55, The Vienna Institute for International Economic Studies, wiiw.
- Schneider, Ulrike & Wagner, Martin, 2008. "Catching Growth Determinants with the Adaptive LASSO," Economics Series 232, Institute for Advanced Studies.
- Ulrike Schneider & Martin Wagner, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
- Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
- Dennis D. Boos & Leonard A. Stefanski & Yujun Wu, 2009. "Fast FSR Variable Selection with Applications to Clinical Trials," Biometrics, The International Biometric Society, vol. 65(3), pages 692-700, September.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017.
"Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach,"
IZA Discussion Papers
10961, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Economics Working Paper Series 1711, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Strittmatter, Anthony & Knaus, Michael C., 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," CEPR Discussion Papers 12224, C.E.P.R. Discussion Papers.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
- Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
- Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
- Zhangong Zhou & Rong Jiang & Weimin Qian, 2011. "Variable selection for additive partially linear models with measurement error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 185-202, September.
- Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
- Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
- Liang Liang & Jue Hou & Hajime Uno & Kelly Cho & Yanyuan Ma & Tianxi Cai, 2022. "Semi-supervised approach to event time annotation using longitudinal electronic health records," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 428-491, July.
- Rand R. Wilcox, 2018. "Robust regression: an inferential method for determining which independent variables are most important," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 100-111, January.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
- Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
- Sangahn Kim & Mehmet Turkoz & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Monitoring of group-structured high-dimensional processes via sparse group LASSO," Annals of Operations Research, Springer, vol. 340(2), pages 891-911, September.
- Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
- Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
- Mao, Guangyu, 2015. "Model selection of M-estimation models using least squares approximation," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 238-243.
- Kwon, Sunghoon & Lee, Sangin & Kim, Yongdai, 2015. "Moderately clipped LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 53-67.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
- Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
- Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
- Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
- Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
- Wei, Baolei, 2022. "Sparse dynamical system identification with simultaneous structural parameters and initial condition estimation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Yoshida, Wataru & Hirose, Kei, 2024. "Fast same-step forecast in SUTSE model and its theoretical properties," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Mallick, Himel & Yi, Nengjun, 2017. "Bayesian group bridge for bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 115-133.
- Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
- Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
- Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.
- Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
- Na You & Shun He & Xueqin Wang & Junxian Zhu & Heping Zhang, 2018. "Subtype classification and heterogeneous prognosis model construction in precision medicine," Biometrics, The International Biometric Society, vol. 74(3), pages 814-822, September.
- Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.
- Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
- Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Kuangnan Fang & Xinyan Fan & Wei Lan & Bingquan Wang, 2019. "Nonparametric additive beta regression for fractional response with application to body fat data," Annals of Operations Research, Springer, vol. 276(1), pages 331-347, May.
- Leng, Chenlei & Li, Bo, 2010. "Least squares approximation with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 254-261, February.
- Alessandro De Gregorio & Stefano Iacus, 2010.
"Adaptive LASSO-type estimation for ergodic diffusion processes,"
UNIMI - Research Papers in Economics, Business, and Statistics
unimi-1100, Universitá degli Studi di Milano.
- Stefano Maria IACUS & Alessandro DE GREGORIO, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," Departmental Working Papers 2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Nguyen Hong Giang & Yu-Ren Wang & Tran Dinh Hieu & Nguyen Huu Ngu & Thanh-Tuan Dang, 2022. "Estimating Land-Use Change Using Machine Learning: A Case Study on Five Central Coastal Provinces of Vietnam," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
- Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Jianfeng Wei & Jian Yang & Xuewen Cheng & Jie Ding & Shengquan Li, 2023. "Adaptive Regression Analysis of Heterogeneous Data Streams via Models with Dynamic Effects," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
- Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
- Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
- Guo, Chaohui & Lv, Jing & Wu, Jibo, 2021. "Composite quantile regression for ultra-high dimensional semiparametric model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
- Zhang Haixiang & Zheng Yinan & Yoon Grace & Zhang Zhou & Gao Tao & Joyce Brian & Zhang Wei & Schwartz Joel & Vokonas Pantel & Colicino Elena & Baccarelli Andrea & Hou Lifang & Liu Lei, 2017. "Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 159-171, August.
- Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
- Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Anestis Antoniadis & Piotr Fryzlewicz & Frédérique Letué, 2010. "The Dantzig Selector in Cox's Proportional Hazards Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 531-552, December.
- Han, Xiaoyi & Peng, Bin & Yang, Yanrong & Zhu, Huanjun, 2021. "Shrinkage estimation of the varying-coefficient model with continuous and categorical covariates," Economics Letters, Elsevier, vol. 202(C).
- Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
- Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
- Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
- Ramon I. Garcia & Joseph G. Ibrahim & Hongtu Zhu, 2010. "Variable Selection in the Cox Regression Model with Covariates Missing at Random," Biometrics, The International Biometric Society, vol. 66(1), pages 97-104, March.
- Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007.
"Regression coefficient and autoregressive order shrinkage and selection via the lasso,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
Cited by:
- Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012.
"The Selection of ARIMA Models with or without Regressors,"
CREATES Research Papers
2012-46, Department of Economics and Business Economics, Aarhus University.
- Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012. "The Selection of ARIMA Models with or without Regressors," Discussion Papers 12-17, University of Copenhagen. Department of Economics.
- Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
- Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
- Klaus Abberger & Michael Graff & Oliver Müller & Boriss Silverstovs, 2022.
"Imputing monthly values for quarterly time series. An application performed with Swiss business cycle data,"
KOF Working papers
22-509, KOF Swiss Economic Institute, ETH Zurich.
- Klaus Abberger & Michael Graff & Oliver Müller & Boriss Siliverstovs, 2023. "Imputing Monthly Values for Quarterly Time Series: An Application Performed with Swiss Business Cycle Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 241-273, November.
- Klaus Abberger & Michael Graff & Oliver Müller & Boriss Siliverstovs, 2022. "Imputing Monthly Values for Quarterly Time Series. An Application Performed with Swiss Business Cycle Data," CESifo Working Paper Series 10191, CESifo.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Xiong, Wei & Wang, Dehui & Deng, Dianliang & Wang, Xinyang & Zhang, Wanying, 2022. "Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
- Nardi, Y. & Rinaldo, A., 2011. "Autoregressive process modeling via the Lasso procedure," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 528-549, March.
- Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
- Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
- Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
- Audrino, Francesco & Camponovo, Lorenzo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Economics Working Paper Series
1327, University of St. Gallen, School of Economics and Political Science.
- Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Abhimanyu Gupta & Myung Hwan Seo, 2023.
"Robust Inference on Infinite and Growing Dimensional Time‐Series Regression,"
Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
- Abhimanyu Gupta & Myung Hwan Seo, 2019. "Robust Inference on Infinite and Growing Dimensional Time Series Regression," Papers 1911.08637, arXiv.org, revised Apr 2023.
- Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
- Wu, Lan & Yang, Yuehan & Liu, Hanzhong, 2014. "Nonnegative-lasso and application in index tracking," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 116-126.
- Hai-Long Shen & Xu Tang, 2021. "The PPADMM Method for Solving Quadratic Programming Problems," Mathematics, MDPI, vol. 9(9), pages 1-15, April.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Inequalities for High Dimensional Vector Autoregressions,"
CREATES Research Papers
2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2012.
"Estimating High-Dimensional Time Series Models,"
CREATES Research Papers
2012-37, Department of Economics and Business Economics, Aarhus University.
- MArcelo C. Medeiros & Eduardo F.Mendes, 2012. "Estimating High-Dimensional Time Series Models," Textos para discussão 602, Department of Economics PUC-Rio (Brazil).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Yujie Xue & Masanobu Taniguchi, 2020. "Modified LASSO estimators for time series regression models with dependent disturbances," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 845-869, December.
- Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
- Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
- Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
- Smeekes, Stephan & Wijler, Etiënne, 2016.
"Macroeconomic Forecasting Using Penalized Regression Methods,"
Research Memorandum
039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- ALAMI CHENTOUFI, Reda, 2024. "Penalized Convex Estimation in Dynamic Location-Scale models," MPRA Paper 123283, University Library of Munich, Germany.
- Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020.
"Lasso Inference for High-Dimensional Time Series,"
Papers
2007.10952, arXiv.org, revised Sep 2022.
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
- Bouchouia, Mohammed & Portier, François, 2021. "High dimensional regression for regenerative time-series: An application to road traffic modeling," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
- Xie, Fang & Xu, Lihu & Yang, Youcai, 2017. "Lasso for sparse linear regression with exponentially β-mixing errors," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 64-70.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
- Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
- Ilya O. Ryzhov & Bin Han & Jelena Bradić, 2016. "Cultivating Disaster Donors Using Data Analytics," Management Science, INFORMS, vol. 62(3), pages 849-866, March.
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Degao Li & Guodong Li & Jinhong You, 2014. "Significant Variable Selection And Autoregressive Order Determination For Time-Series Partially Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 478-490, August.
- Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
- Dan Lou & Yuehan Yang, 2025. "Joint estimation of transfer learning on time series data," Statistical Papers, Springer, vol. 66(1), pages 1-19, February.
- Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
- Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Joanna Bruzda, 2020. "The wavelet scaling approach to forecasting: Verification on a large set of Noisy data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 353-367, April.
- Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
- Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
- Leng, Chenlei & Li, Bo, 2010. "Least squares approximation with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 254-261, February.
- Cai, Zongwu & Juhl, Ted & Yang, Bingduo, 2015. "Functional index coefficient models with variable selection," Journal of Econometrics, Elsevier, vol. 189(2), pages 272-284.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Alessandro De Gregorio & Stefano Iacus, 2010.
"Adaptive LASSO-type estimation for ergodic diffusion processes,"
UNIMI - Research Papers in Economics, Business, and Statistics
unimi-1100, Universitá degli Studi di Milano.
- Stefano Maria IACUS & Alessandro DE GREGORIO, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," Departmental Working Papers 2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015.
"Adaptative LASSO estimation for ARDL models with GARCH innovations,"
Textos para discussão
637, Department of Economics PUC-Rio (Brazil).
- Marcelo C. Medeiros & Eduardo F. Mendes, 2017. "Adaptive LASSO estimation for ARDL models with GARCH innovations," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
- Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
- Sander Barendse, 2023. "Expected Shortfall LASSO," Papers 2307.01033, arXiv.org, revised Jan 2024.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
- Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
- Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
- Xiang-Nan Feng & Hao-Tian Wu & Xin-Yuan Song, 2017. "Bayesian Adaptive Lasso for Ordinal Regression With Latent Variables," Sociological Methods & Research, , vol. 46(4), pages 926-953, November.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Feng, Xiang-Nan & Wang, Yifan & Lu, Bin & Song, Xin-Yuan, 2017. "Bayesian regularized quantile structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 234-248.
- Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
- Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
- Panxu Yuan & Xiao Guo, 2022. "High-dimensional inference for linear model with correlated errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 21-52, January.
- Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
- Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
- Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
- Daniel F. Schmidt & Enes Makalic, 2013. "Estimation of stationary autoregressive models with the Bayesian LASSO," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 517-531, September.
- Hamed Haselimashhadi & Veronica Vinciotti, 2018. "Penalised inference for lagged dependent regression in the presence of autocorrelated residuals," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 49-68, April.
- Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
- Søren Johansen & Marco Riani & Anthony C. Atkinson, 2012.
"The Selection of ARIMA Models with or without Regressors,"
CREATES Research Papers
2012-46, Department of Economics and Business Economics, Aarhus University.
- Wang, Hansheng, 2007.
"A note on iterative marginal optimization: a simple algorithm for maximum rank correlation estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2803-2812, March.
Cited by:
- Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
- Youngki Shin & Zvezdomir Todorov, 2021.
"Exact Computation of Maximum Rank Correlation Estimator,"
Department of Economics Working Papers
2021-03, McMaster University.
- Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
- Youngki Shin & Zvezdomir Todorov, 2020. "Exact Computation of Maximum Rank Correlation Estimator," Papers 2009.03844, arXiv.org, revised Jan 2021.
- Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
- Danyang Huang & Runze Li & Hansheng Wang, 2014. "Feature Screening for Ultrahigh Dimensional Categorical Data With Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 237-244, April.
- Shakeeb Khan & Xiaoying Lan & Elie Tamer & Qingsong Yao, 2021. "Estimating High Dimensional Monotone Index Models by Iterative Convex Optimization1," Papers 2110.04388, arXiv.org, revised Feb 2023.
- Yanqin Fan & Fang Han & Wei Li & Xiao-Hua Zhou, 2019. "On rank estimators in increasing dimensions," Papers 1908.05255, arXiv.org.
- Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Lin, Xiefang & Fang, Fang, 2024. "Variable selection of Kolmogorov-Smirnov maximization with a penalized surrogate loss," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
- Ziqi Chen & Man-Lai Tang & Wei Gao & Ning-Zhong Shi, 2014. "New Robust Variable Selection Methods for Linear Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 725-741, September.
- Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007.
"Tuning parameter selectors for the smoothly clipped absolute deviation method,"
Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
Cited by:
- Kwon, Sunghoon & Choi, Hosik & Kim, Yongdai, 2011. "Quadratic approximation on SCAD penalized estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 421-428, January.
- Hyunkeun Ryan Cho, 2018. "Statistical inference in a growth curve quantile regression model for longitudinal data," Biometrics, The International Biometric Society, vol. 74(3), pages 855-862, September.
- Zhong, Wei & Gao, Yang & Zhou, Wei & Fan, Qingliang, 2021. "Endogenous treatment effect estimation using high-dimensional instruments and double selection," Statistics & Probability Letters, Elsevier, vol. 169(C).
- Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
- Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
- Xiong, Wei & Wang, Dehui & Deng, Dianliang & Wang, Xinyang & Zhang, Wanying, 2022. "Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
- Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
- Wei Qian & Yuhong Yang, 2013. "Model selection via standard error adjusted adaptive lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 295-318, April.
- Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
- Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
- Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Zhangong Zhou & Rong Jiang & Weimin Qian, 2011. "Variable selection for additive partially linear models with measurement error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 185-202, September.
- Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
- Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, February.
- Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
- Ling Zhou & Huazhen Lin & Xinyuan Song & Yi Li, 2014. "Selection of Latent Variables for Multiple Mixed-outcome Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1064-1082, December.
- Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
- Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
- Hu, Jianhua & Xin, Xin & You, Jinhong, 2014. "Model determination and estimation for the growth curve model via group SCAD penalty," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 199-213.
- Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
- Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
- Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Ullah, Aman & Wang, Tao & Yao, Weixin, 2023.
"Semiparametric partially linear varying coefficient modal regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
- Aman Ullah & Tao Wang & Weixin Yao, 2022. "Semiparametric Partially Linear Varying Coefficient Modal Regression," Working Papers 202215, University of California at Riverside, Department of Economics, revised Jun 2022.
- Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
- Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
- Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
- Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
- Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
- Shohoudi, Azadeh & Khalili, Abbas & Wolfson, David B. & Asgharian, Masoud, 2016. "Simultaneous variable selection and de-coarsening in multi-path change-point models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 202-217.
- Zhigeng Geng & Sijian Wang & Menggang Yu & Patrick O. Monahan & Victoria Champion & Grace Wahba, 2015. "Group variable selection via convex log-exp-sum penalty with application to a breast cancer survivor study," Biometrics, The International Biometric Society, vol. 71(1), pages 53-62, March.
- Joel L. Horowitz & Lars Nesheim, 2018.
"Using penalized likelihood to select parameters in a random coefficients multinomial logit model,"
CeMMAP working papers
CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joel L. Horowitz & Lars Nesheim, 2019. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP50/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
- Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
- Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
- Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
- Alan T. K. Wan & Jinhong You & Riquan Zhang, 2016. "A Seemingly Unrelated Nonparametric Additive Model with Autoregressive Errors," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 894-928, May.
- Dongxiao Han & Miao Han & Jian Huang & Yuanyuan Lin, 2023. "Robust inference for high‐dimensional single index models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1590-1615, December.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016.
"TENET: Tail-Event driven NETwork risk,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
- Härdle, Wolfgang Karl & Sirotko-Sibirskaya, Natalia & Wang, Weining, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers 2014-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Baosheng Liang & Peng Wu & Xingwei Tong & Yanping Qiu, 2020. "Regression and subgroup detection for heterogeneous samples," Computational Statistics, Springer, vol. 35(4), pages 1853-1878, December.
- Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
- Das, Ujjwal & Gupta, Sudhir & Gupta, Shuva, 2014. "Screening active factors in supersaturated designs," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 223-232.
- Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
- Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2017. "Regularized latent class analysis with application in cognitive diagnosis," LSE Research Online Documents on Economics 103182, London School of Economics and Political Science, LSE Library.
- Heewon Park & Sadanori Konishi, 2017. "Principal component selection via adaptive regularization method and generalized information criterion," Statistical Papers, Springer, vol. 58(1), pages 147-160, March.
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
- Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
- Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
- Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
- Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
- Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
- Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
- Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
- Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
- Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
- Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
- Lian, Heng, 2012. "A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1224-1228.
- Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
- Xun Lu & Su Liangjun, 2015.
"Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects,"
Working Papers
02-2015, Singapore Management University, School of Economics.
- Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
- Hutter, Marcus & Tran, Minh-Ngoc, 2010. "Model selection with the Loss Rank Principle," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1288-1306, May.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Huang, Zhensheng & Lin, Bingqing & Feng, Fan & Pang, Zhen, 2013. "Efficient penalized estimating method in the partially varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 189-200.
- Hu Yang & Huilan Liu, 2016. "Penalized weighted composite quantile estimators with missing covariates," Statistical Papers, Springer, vol. 57(1), pages 69-88, March.
- Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
- Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
- Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
- D.M. Sakate & D.N. Kashid, 2014. "Variable selection via penalized minimum φ-divergence estimation in logistic regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1233-1246, June.
- Huazhen Lin & Hyokyoung G. Hong & Baoying Yang & Wei Liu & Yong Zhang & Gang-Zhi Fan & Yi Li, 2019. "Nonparametric Time-Varying Coefficient Models for Panel Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 548-566, December.
- Ziqi Chen & Jing Ning & Yu Shen & Jing Qin, 2021. "Combining primary cohort data with external aggregate information without assuming comparability," Biometrics, The International Biometric Society, vol. 77(3), pages 1024-1036, September.
- Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
- Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
- Li, Rui & Wan, Alan T.K. & You, Jinhong, 2016. "Semiparametric GMM estimation and variable selection in dynamic panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 401-423.
- Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
- Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Yuchen Chen & Yuhong Yang, 2021. "The One Standard Error Rule for Model Selection: Does It Work?," Stats, MDPI, vol. 4(4), pages 1-25, November.
- Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Liu, Lili & Lin, Lu, 2019. "Subgroup analysis for heterogeneous additive partially linear models and its application to car sales data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 239-259.
- Kang, Xiaoning & Kang, Lulu & Chen, Wei & Deng, Xinwei, 2022. "A generative approach to modeling data with quantitative and qualitative responses," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Yang, Hu & Guo, Chaohui & Lv, Jing, 2015. "SCAD penalized rank regression with a diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 321-333.
- Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
- Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
- Xia Cui & Heng Peng & Songqiao Wen & Lixing Zhu, 2013. "Component Selection in the Additive Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 491-510, September.
- Xu, Peirong & Peng, Heng & Huang, Tao, 2018. "Unsupervised learning of mixture regression models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 44-56.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
- Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
- Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
- Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
- Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
- Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
- Guo-Liang Tian & Mingqiu Wang & Lixin Song, 2014. "Variable selection in the high-dimensional continuous generalized linear model with current status data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 467-483, March.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
- Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
- Weirong Li & Wensheng Zhu, 2024. "Subgroup analysis with concave pairwise fusion penalty for ordinal response," Statistical Papers, Springer, vol. 65(6), pages 3327-3355, August.
- Mingyang Ren & Sanguo Zhang & Qingzhao Zhang, 2021. "Robust high-dimensional regression for data with anomalous responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 703-736, August.
- Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
- Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
- Lin, Hongmei & Lian, Heng & Liang, Hua, 2019. "Rank reduction for high-dimensional generalized additive models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 672-684.
- Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
- Chen, Kun & Huang, Rui & Chan, Ngai Hang & Yau, Chun Yip, 2019. "Subgroup analysis of zero-inflated Poisson regression model with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 8-18.
- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Fangfang Wang & Lu Lin & Lei Liu & Kangning Wang, 2021. "Estimation and clustering for partially heterogeneous single index model," Statistical Papers, Springer, vol. 62(6), pages 2529-2556, December.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
- Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2014. "Variable selection for varying dispersion beta regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 95-108, January.
- Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
- Michael R. Wierzbicki & Li-Bing Guo & Qing-Tao Du & Wensheng Guo, 2014. "Sparse Semiparametric Nonlinear Model With Application to Chromatographic Fingerprints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1339-1349, December.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers CWP35/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
- Fei Wang & Lu Wang & Peter X.‐K. Song, 2016. "Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements," Biometrics, The International Biometric Society, vol. 72(4), pages 1184-1193, December.
- Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
- Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
- Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
- Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
- Setoudehtazangi, F. & Manouchehri, T. & Nematollahi, A.R. & Caporin, M., 2024. "Time series clustering based on latent volatility mixture modeling with applications in finance," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 543-564.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Sanying Feng & Menghan Zhang & Tiejun Tong, 2022. "Variable selection for functional linear models with strong heredity constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 321-339, April.
- Xuan Liu & Jianbao Chen, 2021. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
- Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
- Ramon I. Garcia & Joseph G. Ibrahim & Hongtu Zhu, 2010. "Variable Selection in the Cox Regression Model with Covariates Missing at Random," Biometrics, The International Biometric Society, vol. 66(1), pages 97-104, March.
- Shao J. & Wang H., 2002.
"Sample Correlation Coefficients Based on Survey Data Under Regression Imputation,"
Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 544-552, June.
Cited by:
- Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
- Zhou, Jing & Lan, Wei & Wang, Hansheng, 2022. "Asymptotic covariance estimation by Gaussian random perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Gelein, Brigitte & Haziza, David & Causeur, David, 2014. "Preserving relationships between variables with MIVQUE based imputation for missing survey data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 197-208.
- Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.