Quantile regression and variable selection for the single-index model
Author
Abstract
Suggested Citation
DOI: 10.1080/02664763.2014.881786
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Hai-Bin, 2009. "Bayesian estimation and variable selection for single index models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2617-2627, May.
- Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
- Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Efang Kong & Yingcun Xia, 2007. "Variable selection for the single‐index model," Biometrika, Biometrika Trust, vol. 94(1), pages 217-229.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
- Hong-Xia Xu & Zhen-Long Chen & Jiang-Feng Wang & Guo-Liang Fan, 2019. "Quantile regression and variable selection for partially linear model with randomly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1137-1160, August.
- Huilan Liu & Hu Yang & Changgen Peng, 2019. "Weighted composite quantile regression for single index model with missing covariates at random," Computational Statistics, Springer, vol. 34(4), pages 1711-1740, December.
- Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
- Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
- Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
- Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
- Schneider Ulrike & Wagner Martin, 2012.
"Catching Growth Determinants with the Adaptive Lasso,"
German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
- Ulrike Schneider & Martin Wagner, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
- Schneider, Ulrike & Wagner, Martin, 2008. "Catching Growth Determinants with the Adaptive LASSO," Economics Series 232, Institute for Advanced Studies.
- Ulrike Schneider & Martin Wagner, 2009. "Catching Growth Determinants with the Adaptive Lasso," wiiw Working Papers 55, The Vienna Institute for International Economic Studies, wiiw.
- Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
- Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
- Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
- Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Yu-Zhu Tian & Man-Lai Tang & Mao-Zai Tian, 2021. "Bayesian joint inference for multivariate quantile regression model with L $$_{1/2}$$ 1 / 2 penalty," Computational Statistics, Springer, vol. 36(4), pages 2967-2994, December.
- Tian, Yuzhu & Song, Xinyuan, 2020. "Bayesian bridge-randomized penalized quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:7:p:1565-1577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.