IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v104y2012i1p88-100.html
   My bibliography  Save this article

An adaptive estimation of MAVE

Author

Listed:
  • Wang, Qin
  • Yao, Weixin

Abstract

Minimum average variance estimation (MAVE, Xia et al. (2002) [29]) is an effective dimension reduction method. It requires no strong probabilistic assumptions on the predictors, and can consistently estimate the central mean subspace. It is applicable to a wide range of models, including time series. However, the least squares criterion used in MAVE will lose its efficiency when the error is not normally distributed. In this article, we propose an adaptive MAVE which can be adaptive to different error distributions. We show that the proposed estimate has the same convergence rate as the original MAVE. An EM algorithm is proposed to implement the new adaptive MAVE. Using both simulation studies and a real data analysis, we demonstrate the superior finite sample performance of the proposed approach over the existing least squares based MAVE when the error distribution is non-normal and the comparable performance when the error is normal.

Suggested Citation

  • Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
  • Handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:88-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11001436
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cizek, P. & Hardle, W., 2006. "Robust estimation of dimension reduction space," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 545-555, November.
    2. Linton, Oliver & Xiao, Zhijie, 2007. "A Nonparametric Regression Estimator That Adapts To Error Distribution Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 23(3), pages 371-413, June.
    3. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
    4. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    5. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    6. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    7. Ao Yuan, 2009. "Semiparametric inference with kernel likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 207-228.
    8. Hodgson, Douglas J., 1998. "Adaptive estimation of cointegrating regressions with ARMA errors," Journal of Econometrics, Elsevier, vol. 85(2), pages 231-267, August.
    9. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    10. Steigerwald, Douglas G., 1992. "Adaptive estimation in time series regression models," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 251-275.
    11. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    12. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    13. Wang, Hansheng & Xia, Yingcun, 2008. "Sliced Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
    2. Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
    3. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    4. Zhang, Jing & Wang, Qin & Mays, D'Arcy, 2021. "Robust MAVE through nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    5. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    6. Soale, Abdul-Nasah, 2023. "Projection expectile regression for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    7. De Gooijer, Jan G. & Reichardt, Hugo, 2021. "A multi-step kernel–based regression estimator that adapts to error distributions of unknown form," LSE Research Online Documents on Economics 115083, London School of Economics and Political Science, LSE Library.
    8. Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    2. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
    4. Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.
    5. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    6. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
    7. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    9. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    10. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    11. Douglas Hodgson, 2002. "Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form," Cahiers de recherche CREFE / CREFE Working Papers 146, CREFE, Université du Québec à Montréal.
    12. Xue, Yuan & Zhang, Nan & Yin, Xiangrong & Zheng, Haitao, 2017. "Sufficient dimension reduction using Hilbert–Schmidt independence criterion," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 67-78.
    13. Hyung Park & Thaddeus Tarpey & Eva Petkova & R. Todd Ogden, 2024. "A high-dimensional single-index regression for interactions between treatment and covariates," Statistical Papers, Springer, vol. 65(7), pages 4025-4056, September.
    14. Paris, Quentin, 2014. "Minimax adaptive dimension reduction for regression," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 186-202.
    15. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    16. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    17. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    18. Yao, Weixin & Wang, Qin, 2013. "Robust variable selection through MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 42-49.
    19. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    20. Yuan Xue & Xiangrong Yin, 2015. "Sufficient dimension folding for a functional of conditional distribution of matrix- or array-valued objects," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 253-269, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:88-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.