IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i1p12-26.html
   My bibliography  Save this article

Sparse alternatives to ridge regression: a random effects approach

Author

Listed:
  • Arief Gusnanto
  • Yudi Pawitan

Abstract

In a calibration of near-infrared (NIR) instrument, we regress some chemical compositions of interest as a function of their NIR spectra. In this process, we have two immediate challenges: first, the number of variables exceeds the number of observations and, second, the multicollinearity between variables are extremely high. To deal with the challenges, prediction models that produce sparse solutions have recently been proposed. The term 'sparse' means that some model parameters are zero estimated and the other parameters are estimated naturally away from zero. In effect, a variable selection is embedded in the model to potentially achieve a better prediction. Many studies have investigated sparse solutions for latent variable models, such as partial least squares and principal component regression, and for direct regression models such as ridge regression (RR). However, in the latter, it mainly involves an L 1 norm penalty to the objective function such as lasso regression. In this study, we investigate new sparse alternative models for RR within a random effects model framework, where we consider Cauchy and mixture-of-normals distributions on the random effects. The results indicate that the mixture-of-normals model produces a sparse solution with good prediction and better interpretation. We illustrate the methods using NIR spectra datasets from milk and corn specimens.

Suggested Citation

  • Arief Gusnanto & Yudi Pawitan, 2015. "Sparse alternatives to ridge regression: a random effects approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 12-26, January.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:1:p:12-26
    DOI: 10.1080/02664763.2014.929640
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.929640
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.929640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    2. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
    2. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    3. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    4. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    5. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    6. Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, Department of Economics and Business Economics, Aarhus University.
    7. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    8. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    9. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
    10. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    11. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    12. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
    14. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    15. Zhang Yuping & Tibshirani Robert J. & Davis Ronald W., 2010. "Predicting Patient Survival from Longitudinal Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-23, November.
    16. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    18. Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    19. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    20. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:1:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.