IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p941-d542017.html
   My bibliography  Save this article

The PPADMM Method for Solving Quadratic Programming Problems

Author

Listed:
  • Hai-Long Shen

    (Department of Mathematics College of Sciences, Northeastern University Shenyang, Shenyang 100819, China)

  • Xu Tang

    (Northwest Institute of Mechanical and Electrical Engineering Xianyang, Xianyang 712000, China)

Abstract

In this paper, a preconditioned and proximal alternating direction method of multipliers (PPADMM) is established for iteratively solving the equality-constraint quadratic programming problems. Based on strictly matrix analysis, we prove that this method is asymptotically convergent. We also show the connection between this method with some existing methods, so it combines the advantages of the methods. Finally, the numerical examples show that the algorithm proposed is efficient, stable, and flexible for solving the quadratic programming problems with equality constraint.

Suggested Citation

  • Hai-Long Shen & Xu Tang, 2021. "The PPADMM Method for Solving Quadratic Programming Problems," Mathematics, MDPI, vol. 9(9), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:941-:d:542017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    2. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    3. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    4. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    5. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    6. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    7. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    8. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    9. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    10. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    11. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    12. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    13. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    14. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    15. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    16. Xiang-Nan Feng & Hao-Tian Wu & Xin-Yuan Song, 2017. "Bayesian Adaptive Lasso for Ordinal Regression With Latent Variables," Sociological Methods & Research, , vol. 46(4), pages 926-953, November.
    17. Panxu Yuan & Xiao Guo, 2022. "High-dimensional inference for linear model with correlated errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 21-52, January.
    18. Marcelo C. Medeiros & Eduardo F. Mendes, 2017. "Adaptive LASSO estimation for ARDL models with GARCH innovations," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
    19. Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
    20. Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
    21. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:941-:d:542017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.