IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i1d10.1007_s10463-015-0544-7.html
   My bibliography  Save this article

Penalized estimation equation for an extended single-index model

Author

Listed:
  • Yongjin Li

    (Chinese Academy of Sciences)

  • Qingzhao Zhang

    (University of Chinese Academy of Sciences)

  • Qihua Wang

    (Chinese Academy of Sciences
    Shenzhen University)

Abstract

The single-index model is a useful extension of the linear regression model. Cui et al. (Ann Stat 39:1658–1688, 2011) proposed an estimating function method for the estimation of index vector in an extended single-index model (ESIM). Nevertheless, how to conduct variable selection for ESIM has not been studied. To solve this problem, we penalize the estimating equation with some types of penalty, such as smoothly clipped absolute deviation penalty and adaptive lasso penalty. Under some regularity conditions, the oracle property is established, i.e., the resulting estimator can be as efficient as the oracle estimator, thus we improve the explanatory ability and accuracy of estimator for the ESIM. A novel algorithm is proposed to solve the penalized estimating equation by combining quasi-Fisher scoring type algorithm and MM algorithm. Simulation study and real data application demonstrate the excellent performance of the proposed estimators.

Suggested Citation

  • Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0544-7
    DOI: 10.1007/s10463-015-0544-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-015-0544-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-015-0544-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
    5. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    6. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    7. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    8. Zhu, Li-Ping & Zhu, Li-Xing, 2009. "Nonconcave penalized inverse regression in single-index models with high dimensional predictors," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 862-875, May.
    9. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    10. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Efang Kong & Yingcun Xia, 2007. "Variable selection for the single‐index model," Biometrika, Biometrika Trust, vol. 94(1), pages 217-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    2. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
    3. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    6. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    7. Schneider Ulrike & Wagner Martin, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
    8. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
    9. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    10. Blommaert, A. & Hens, N. & Beutels, Ph., 2014. "Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 667-680.
    11. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
    12. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    13. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
    14. Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
    15. Fan, Yali & Qin, Guoyou & Zhu, Zhongyi, 2012. "Variable selection in robust regression models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 156-167.
    16. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    17. Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
    18. Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
    19. Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
    20. Xiang-Jie Li & Xue-Jun Ma & Jing-Xiao Zhang, 2017. "Robust feature screening for varying coefficient models via quantile partial correlation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 17-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0544-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.