On the distribution of the adaptive LASSO estimator
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Leeb, Hannes & Potscher, Benedikt M., 2008.
"Sparse estimators and the oracle property, or the return of Hodges' estimator,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
- Hannes Leeb & Benedikt M. Poetscher, 2005. "Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator," Cowles Foundation Discussion Papers 1500, Cowles Foundation for Research in Economics, Yale University, revised Apr 2007.
- Pötscher, Benedikt M. & Leeb, Hannes, 2009.
"On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding,"
Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
- Pötscher, Benedikt M. & Leeb, Hannes, 2007. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," MPRA Paper 5615, University Library of Munich, Germany.
- Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
- Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
- Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
- Leeb, Hannes & Pötscher, Benedikt M., 2008.
"Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?,"
Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
- Hannes Leeb & Benedikt M. Potscher, 2003. "Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?," Cowles Foundation Discussion Papers 1444, Cowles Foundation for Research in Economics, Yale University.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Can One Estimate the Unconditional Distribution of Post-Model-Selection Estimators ?," MPRA Paper 72, University Library of Munich, Germany.
- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(3), pages 537-549, June.
- Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
- Leeb, Hannes & Pötscher, Benedikt M., 2003.
"The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations,"
Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
- Hannes Leeb & Benedikt M. Poetscher, 2000. "The Finite-Sample Distribution of Post-Model-Selection Estimators, and Uniform Versus Non-Uniform Approximations," Econometrics 0004001, University Library of Munich, Germany.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
- Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ulrike Schneider & Martin Wagner, 2012.
"Catching Growth Determinants with the Adaptive Lasso,"
German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
- Schneider Ulrike & Wagner Martin, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
- Schneider, Ulrike & Wagner, Martin, 2008. "Catching Growth Determinants with the Adaptive LASSO," Economics Series 232, Institute for Advanced Studies.
- Ulrike Schneider & Martin Wagner, 2009. "Catching Growth Determinants with the Adaptive Lasso," wiiw Working Papers 55, The Vienna Institute for International Economic Studies, wiiw.
- Hui, Francis K.C. & Müller, Samuel & Welsh, A.H., 2020. "The LASSO on latent indices for regression modeling with ordinal categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014.
"On various confidence intervals post-model-selection,"
MPRA Paper
52858, University Library of Munich, Germany.
- Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 58326, University Library of Munich, Germany, revised 2014.
- Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
- Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
- Ulrike Schneider, 2016. "Confidence Sets Based on Thresholding Estimators in High-Dimensional Gaussian Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1412-1455, December.
- Leeb, Hannes & Pötscher, Benedikt M. & Kivaranovic, Danijel, 2018. "Comment on "Model Confidence Bounds for Variable Selection" by Yang Li, Yuetian Luo, Davide Ferrari, Xiaonan Hu, and Yichen Qin," MPRA Paper 90655, University Library of Munich, Germany.
- Bruce E. Hansen, 2016. "The Risk of James--Stein and Lasso Shrinkage," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1456-1470, December.
- Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
- Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
- David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
- Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
- Pötscher, Benedikt M. & Schneider, Ulrike, 2008. "Confidence sets based on penalized maximum likelihood estimators," MPRA Paper 9062, University Library of Munich, Germany.
- Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
- Pötscher, Benedikt M. & Leeb, Hannes, 2009.
"On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding,"
Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
- Pötscher, Benedikt M. & Leeb, Hannes, 2007. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," MPRA Paper 5615, University Library of Munich, Germany.
- Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
- Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014.
"On various confidence intervals post-model-selection,"
MPRA Paper
52858, University Library of Munich, Germany.
- Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 58326, University Library of Munich, Germany, revised 2014.
- Lu, Xun & Su, Liangjun, 2016.
"Shrinkage estimation of dynamic panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
- Liu, Chu-An, 2015.
"Distribution theory of the least squares averaging estimator,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
- Liu, Chu-An, 2013. "Distribution Theory of the Least Squares Averaging Estimator," MPRA Paper 54201, University Library of Munich, Germany.
- Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
- Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
- Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
- Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Schneider Ulrike & Wagner Martin, 2012.
"Catching Growth Determinants with the Adaptive Lasso,"
German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
- Ulrike Schneider & Martin Wagner, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, Verein für Socialpolitik, vol. 13(1), pages 71-85, February.
- Schneider, Ulrike & Wagner, Martin, 2008. "Catching Growth Determinants with the Adaptive LASSO," Economics Series 232, Institute for Advanced Studies.
- Ulrike Schneider & Martin Wagner, 2009. "Catching Growth Determinants with the Adaptive Lasso," wiiw Working Papers 55, The Vienna Institute for International Economic Studies, wiiw.
- Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
More about this item
Keywords
Penalized maximum likelihood; LASSO; adaptive LASSO; nonnegative garotte; finite-sample distribution; asymptotic distribution; oracle property; estimation of distribution; uniform consistency;All these keywords.
JEL classification:
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2008-02-02 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6913. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.