IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v17y2023i1d10.1007_s11634-022-00495-6.html
   My bibliography  Save this article

Robust mixture regression modeling based on two-piece scale mixtures of normal distributions

Author

Listed:
  • Atefeh Zarei

    (Islamic Azad University)

  • Zahra Khodadadi

    (Islamic Azad University)

  • Mohsen Maleki

    (University of Isfahan)

  • Karim Zare

    (Islamic Azad University)

Abstract

The inference of mixture regression models (MRM) is traditionally based on the normal (symmetry) assumption of component errors and thus is sensitive to outliers or symmetric/asymmetric lightly/heavy-tailed errors. To deal with these problems, some new mixture regression models have been proposed recently. In this paper, a general class of robust mixture regression models is presented based on the two-piece scale mixtures of normal (TP-SMN) distributions. The proposed model is so flexible that can simultaneously accommodate asymmetry and heavy tails. The stochastic representation of the proposed model enables us to easily implement an EM-type algorithm to estimate the unknown parameters of the model based on a penalized likelihood. In addition, the performance of the considered estimators is illustrated using a simulation study and a real data example.

Suggested Citation

  • Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
  • Handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00495-6
    DOI: 10.1007/s11634-022-00495-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00495-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00495-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Maleki & Mohammad Reza Mahmoudi, 2017. "Two-Piece location-scale distributions based on scale mixtures of normal family," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(24), pages 12356-12369, December.
    2. Naik, Prasad A. & Shi, Peide & Tsai, Chih-Ling, 2007. "Extending the Akaike Information Criterion to Mixture Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 244-254, March.
    3. Akram Hoseinzadeh & Mohsen Maleki & Zahra Khodadadi, 2021. "Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 451-467, September.
    4. Marianthi Markatou, 2000. "Mixture Models, Robustness, and the Weighted Likelihood Methodology," Biometrics, The International Biometric Society, vol. 56(2), pages 483-486, June.
    5. T. Rolf Turner, 2000. "Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 371-384.
    6. M. Maleki & A. R. Nematollahi, 2017. "Bayesian approach to epsilon-skew-normal family," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(15), pages 7546-7561, August.
    7. Cosslett, Stephen R. & Lee, Lung-Fei, 1985. "Serial correlation in latent discrete variable models," Journal of Econometrics, Elsevier, vol. 27(1), pages 79-97, January.
    8. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    9. Song, Weixing & Yao, Weixin & Xing, Yanru, 2014. "Robust mixture regression model fitting by Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 128-137.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. David Hunter & Derek Young, 2012. "Semiparametric mixtures of regressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 19-38.
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    13. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    14. Mohsen Maleki & Darren Wraith, 2019. "Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework," Computational Statistics, Springer, vol. 34(3), pages 1039-1053, September.
    15. A. Hajrajabi & M. Maleki, 2019. "Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(11), pages 2010-2029, August.
    16. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    17. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    18. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    19. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    2. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    3. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    4. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    5. Akram Hoseinzadeh & Mohsen Maleki & Zahra Khodadadi, 2021. "Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 451-467, September.
    6. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Segmentação de Mercado e modelos mistura de regressão para variáveis normais," FEP Working Papers 262, Universidade do Porto, Faculdade de Economia do Porto.
    7. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    8. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    9. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    10. Nurgun Topalli & İbrahim Dogan, 2016. "The structure and sustainability of current account deficit: Turkish evidence from regime switching," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(4), pages 570-589, June.
    11. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    12. Doğan, İbrahim & Bilgili, Faik, 2014. "The non-linear impact of high and growing government external debt on economic growth: A Markov Regime-switching approach," Economic Modelling, Elsevier, vol. 39(C), pages 213-220.
    13. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    14. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    15. Shanshan Qin & Zhenni Tan & Yuehua Wu, 2024. "On robust estimation of hidden semi-Markov regime-switching models," Annals of Operations Research, Springer, vol. 338(2), pages 1049-1081, July.
    16. Carol Alexander & Andreas Kaeck, 2006. "Regimes in CDS Spreads: A Markov Switching Model of iTraxx Europe Indices," ICMA Centre Discussion Papers in Finance icma-dp2006-08, Henley Business School, University of Reading.
    17. Alexander, Carol & Kaeck, Andreas, 2008. "Regime dependent determinants of credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1008-1021, June.
    18. Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    19. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    20. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2011. "Consequences of Political Instability, Governance and Bureaucratic Corruption on Inflation and Growth: The Case of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 50(4), pages 773-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00495-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.