IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i1d10.1007_s10463-016-0588-3.html
   My bibliography  Save this article

Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty

Author

Listed:
  • Yanxin Wang

    (Ningbo University of Technology
    University of Warwick)

  • Qibin Fan

    (Wuhan University)

  • Li Zhu

    (Xiamen University of Technology)

Abstract

Variable selection problems are typically addressed under the regularization framework. In this paper, an exponential type penalty which very closely resembles the $$L_0$$ L 0 penalty is proposed, we called it EXP penalty. The EXP penalized least squares procedure is shown to consistently select the correct model and is asymptotically normal, provided the number of variables grows slower than the number of observations. EXP is efficiently implemented using a coordinate descent algorithm. Furthermore, we propose a modified BIC tuning parameter selection method for EXP and show that it consistently identifies the correct model, while allowing the number of variables to diverge. Simulation results and data example show that the EXP procedure performs very well in a variety of settings.

Suggested Citation

  • Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0588-3
    DOI: 10.1007/s10463-016-0588-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-016-0588-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-016-0588-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Patrick Breheny, 2015. "The group exponential lasso for bi‐level variable selection," Biometrics, The International Biometric Society, vol. 71(3), pages 731-740, September.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Kim, Yongdai & Choi, Hosik & Oh, Hee-Seok, 2008. "Smoothly Clipped Absolute Deviation on High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1665-1673.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    7. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    8. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    9. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    11. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    2. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    3. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    6. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    7. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    8. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
    9. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    10. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
    11. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    14. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    15. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    16. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    21. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0588-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.