IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v222y2021i1p44-55.html
   My bibliography  Save this article

Using penalized likelihood to select parameters in a random coefficients multinomial logit model

Author

Listed:
  • Horowitz, Joel L.
  • Nesheim, Lars

Abstract

This paper is about estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters, some of which may be zero. The paper gives conditions under which, with probability approaching 1 as the sample size increases, penalized maximum likelihood (PML) estimation with the adaptive LASSO (AL) penalty distinguishes correctly between zero and non-zero parameters. The paper also gives conditions under which PML reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters. The paper describes a method for computing PML estimates and presents the results of Monte Carlo experiments that illustrate their performance. It also presents the results of PML estimation of a random coefficients logit model of choice among brands of butter and margarine in the British groceries market.

Suggested Citation

  • Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
  • Handle: RePEc:eee:econom:v:222:y:2021:i:1:p:44-55
    DOI: 10.1016/j.jeconom.2019.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620300427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    3. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    4. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    5. Small, Kenneth A & Rosen, Harvey S, 1981. "Applied Welfare Economics with Discrete Choice Models," Econometrica, Econometric Society, vol. 49(1), pages 105-130, January.
    6. Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
    7. Rachel Griffith & Lars Nesheim & Martin O'Connell, 2018. "Income effects and the welfare consequences of tax in differentiated product oligopoly," Quantitative Economics, Econometric Society, vol. 9(1), pages 305-341, March.
    8. Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
    9. Christopher R. Knittel & Konstantinos Metaxoglou, 2014. "Estimation of Random-Coefficient Demand Models: Two Empiricists' Perspective," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 34-59, March.
    10. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    11. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    14. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    15. Geweke, John & Keane, Michael, 2001. "Computationally intensive methods for integration in econometrics," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 56, pages 3463-3568, Elsevier.
    16. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
    17. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    18. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers CWP35/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    21. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemei Shao & Munir Ahmad & Fahad Javed, 2024. "Firm-Level Digitalization for Sustainability Performance: Evidence from Ningbo City of China," Sustainability, MDPI, vol. 16(20), pages 1-35, October.
    2. Zheqi Wang & Dehui Wang & Jianhua Cheng, 2023. "A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 619-658, June.
    3. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    3. Adriano Zanin Zambom & Gregory J. Matthews, 2021. "Sure independence screening in the presence of missing data," Statistical Papers, Springer, vol. 62(2), pages 817-845, April.
    4. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
    7. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    8. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    9. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    10. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
    11. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    12. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    13. Chandoevwit, Worawan & Wasi, Nada, 2020. "Incorporating discrete choice experiments into policy decisions: Case of designing public long-term care insurance," Social Science & Medicine, Elsevier, vol. 258(C).
    14. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
    15. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    16. Islam, Mouyid, 2015. "Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(1).
    17. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    18. Kaiser, Ulrich & Mendez, Susan J. & Rønde, Thomas & Ullrich, Hannes, 2014. "Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark," Journal of Health Economics, Elsevier, vol. 36(C), pages 174-187.
    19. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    20. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.

    More about this item

    Keywords

    Penalized estimation; Adaptive LASSO; Random coefficients; Logit model;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:222:y:2021:i:1:p:44-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.