IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i2d10.1007_s00180-016-0690-2.html
   My bibliography  Save this article

On the impact of model selection on predictor identification and parameter inference

Author

Listed:
  • Ruth M. Pfeiffer

    (National Cancer Institute)

  • Andrew Redd

    (University of Utah School of Medicine)

  • Raymond J. Carroll

    (Texas A&M University)

Abstract

We assessed the ability of several penalized regression methods for linear and logistic models to identify outcome-associated predictors and the impact of predictor selection on parameter inference for practical sample sizes. We studied effect estimates obtained directly from penalized methods (Algorithm 1), or by refitting selected predictors with standard regression (Algorithm 2). For linear models, penalized linear regression, elastic net, smoothly clipped absolute deviation (SCAD), least angle regression and LASSO had a low false negative (FN) predictor selection rates but false positive (FP) rates above 20 % for all sample and effect sizes. Partial least squares regression had few FPs but many FNs. Only relaxo had low FP and FN rates. For logistic models, LASSO and penalized logistic regression had many FPs and few FNs for all sample and effect sizes. SCAD and adaptive logistic regression had low or moderate FP rates but many FNs. 95 % confidence interval coverage of predictors with null effects was approximately 100 % for Algorithm 1 for all methods, and 95 % for Algorithm 2 for large sample and effect sizes. Coverage was low only for penalized partial least squares (linear regression). For outcome-associated predictors, coverage was close to 95 % for Algorithm 2 for large sample and effect sizes for all methods except penalized partial least squares and penalized logistic regression. Coverage was sub-nominal for Algorithm 1. In conclusion, many methods performed comparably, and while Algorithm 2 is preferred to Algorithm 1 for estimation, it yields valid inference only for large effect and sample sizes.

Suggested Citation

  • Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0690-2
    DOI: 10.1007/s00180-016-0690-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0690-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0690-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    2. Bradley Efron, 2014. "Estimation and Accuracy After Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 991-1007, September.
    3. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    4. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    5. Meinshausen, Nicolai, 2007. "Relaxed Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 374-393, September.
    6. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    7. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    12. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    13. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    14. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.
    2. Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
    3. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    4. Schneider Ulrike & Wagner Martin, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
    5. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    6. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    7. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    8. Bruce E. Hansen, 2016. "The Risk of James--Stein and Lasso Shrinkage," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1456-1470, December.
    9. Yang, Yuan & McMahan, Christopher S. & Wang, Yu-Bo & Ouyang, Yuyuan, 2024. "Estimation of l0 norm penalized models: A statistical treatment," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    10. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
    11. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    12. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    13. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    14. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    15. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
    16. Martinez Josue G. & Carroll Raymond J & Muller Samuel & Sampson Joshua N. & Chatterjee Nilanjan, 2010. "A Note on the Effect on Power of Score Tests via Dimension Reduction by Penalized Regression under the Null," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-14, March.
    17. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    18. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    19. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    20. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0690-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.