IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1241-1256.html
   My bibliography  Save this article

Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle

Author

Listed:
  • Alexander Aue
  • Rex C. Y. Cheung
  • Thomas C. M. Lee
  • Ming Zhong

Abstract

This article proposes new model-fitting techniques for quantiles of an observed data sequence, including methods for data segmentation and variable selection. The main contribution, however, is in providing a means to perform these two tasks simultaneously. This is achieved by matching the data with the best-fitting piecewise quantile regression model, where the fit is determined by a penalization derived from the minimum description length principle. The resulting optimization problem is solved with the use of genetic algorithms. The proposed, fully automatic procedures are, unlike traditional break point procedures, not based on repeated hypothesis tests, and do not require, unlike most variable selection procedures, the specification of a tuning parameter. Theoretical large-sample properties are derived. Empirical comparisons with existing break point and variable selection methods for quantiles indicate that the new procedures work well in practice.

Suggested Citation

  • Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1241-1256
    DOI: 10.1080/01621459.2014.889022
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.889022
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.889022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan, Bai, 1995. "Estimation of multiple-regime regressions with least absolutes deviation," MPRA Paper 32916, University Library of Munich, Germany, revised Feb 1998.
    2. Su, Liangjun & Xiao, Zhijie, 2008. "Testing for parameter stability in quantile regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2768-2775, November.
    3. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    5. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    6. Thomas C. M. Lee, 2001. "An Introduction to Coding Theory and the Two‐Part Minimum Description Length Principle," International Statistical Review, International Statistical Institute, vol. 69(2), pages 169-183, August.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Bassett, Gilbert W. & Koenker, Roger W., 1986. "Strong Consistency of Regression Quantiles and Related Empirical Processes," Econometric Theory, Cambridge University Press, vol. 2(2), pages 191-201, August.
    9. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    10. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    11. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    12. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    13. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    14. Wang, Huixia & He, Xuming, 2007. "Detecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 104-112, March.
    15. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    3. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    4. Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Modelling the COVID‐19 infection trajectory: A piecewise linear quantile trend model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1589-1607, November.
    5. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    6. Linda Mhalla & Valérie Chavez‐Demoulin & Debbie J. Dupuis, 2020. "Causal mechanism of extreme river discharges in the upper Danube basin network," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 741-764, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    2. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    3. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    4. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    5. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    6. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    7. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    8. Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
    9. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    10. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    11. Uribe, Jorge M. & Chuliá, Helena & Guillén, Montserrat, 2017. "Uncertainty, systemic shocks and the global banking sector: Has the crisis modified their relationship?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 52-68.
    12. Marilena Furno, 2012. "Tests for structural break in quantile regressions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 493-515, October.
    13. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    14. Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
    15. Kuriyama Nina, 2016. "Testing cointegration in quantile regressions with an application to the term structure of interest rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 107-121, April.
    16. Wang, Yue & Zhou, Yan & Li, Rui & Lian, Heng, 2022. "Sparse high-dimensional semi-nonparametric quantile regression in a reproducing kernel Hilbert space," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    17. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    18. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    19. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    20. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1241-1256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.