IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v183y2023ics0167947323000415.html
   My bibliography  Save this article

Robust variable selection and estimation via adaptive elastic net S-estimators for linear regression

Author

Listed:
  • Kepplinger, David

Abstract

Heavy-tailed error distributions and predictors with anomalous values are ubiquitous in high-dimensional regression problems and can seriously jeopardize the validity of statistical analyses if not properly addressed. For more reliable variable selection and prediction under these adverse conditions, adaptive PENSE, a new robust regularized regression estimator, is proposed. Adaptive PENSE yields reliable variable selection and coefficient estimates even under aberrant contamination in the predictors or residuals. It is shown that the adaptive penalty leads to more robust and reliable variable selection than other penalties, particularly in the presence of gross outliers in the predictor space. It is further demonstrated that adaptive PENSE has strong variable selection properties and that it possesses the oracle property even under heavy-tailed errors and without the need to estimate the error scale. Numerical studies on simulated and real data sets highlight the superior finite-sample performance in a vast range of settings compared to other robust regularized estimators in the case of contaminated samples. An R package implementing a fast algorithm for computing the proposed method and additional simulation results are provided in the supplementary materials.

Suggested Citation

  • Kepplinger, David, 2023. "Robust variable selection and estimation via adaptive elastic net S-estimators for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:csdana:v:183:y:2023:i:c:s0167947323000415
    DOI: 10.1016/j.csda.2023.107730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000415
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jianqing Fan & Shaojun Guo & Ning Hao, 2012. "Variance estimation using refitted cross‐validation in ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 37-65, January.
    3. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Luca Insolia & Ana Kenney & Francesca Chiaromonte & Giovanni Felici, 2022. "Simultaneous feature selection and outlier detection with optimality guarantees," Biometrics, The International Biometric Society, vol. 78(4), pages 1592-1603, December.
    6. Gijbels, I. & Vrinssen, I., 2015. "Robust nonnegative garrote variable selection in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 1-22.
    7. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    8. Ryan J. Tibshirani & Saharon Rosset, 2019. "Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 697-712, April.
    9. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    10. Yiyuan She & Zhifeng Wang & Jiahui Shen, 2022. "Gaining Outlier Resistance With Progressive Quantiles: Fast Algorithms and Theoretical Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1282-1295, September.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Pang & Lei Xu & Charles Viau & Yao Lu & Reza Salavati & Niladri Basu & Jianguo Xia, 2024. "MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    2. Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    3. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    4. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    9. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    10. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    11. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    12. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    13. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    14. Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
    15. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    16. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    17. Holger Breinlich & Valentina Corradi & Nadia Rocha & Michele Ruta & Joao M.C. Santos Silva & Tom Zylkin, 2021. "Machine Learning in International Trade Research ?- Evaluating the Impact of Trade Agreements," School of Economics Discussion Papers 0521, School of Economics, University of Surrey.
    18. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    19. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
    20. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:183:y:2023:i:c:s0167947323000415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.