IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1184-1193.html
   My bibliography  Save this article

Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements

Author

Listed:
  • Fei Wang
  • Lu Wang
  • Peter X.‐K. Song

Abstract

Combining multiple studies is frequently undertaken in biomedical research to increase sample sizes for statistical power improvement. We consider the marginal model for the regression analysis of repeated measurements collected in several similar studies with potentially different variances and correlation structures. It is of great importance to examine whether there exist common parameters across study‐specific marginal models so that simpler models, sensible interpretations, and meaningful efficiency gain can be obtained. Combining multiple studies via the classical means of hypothesis testing involves a large number of simultaneous tests for all possible subsets of common regression parameters, in which it results in unduly large degrees of freedom and low statistical power. We develop a new method of fused lasso with the adaptation of parameter ordering (FLAPO) to scrutinize only adjacent‐pair parameter differences, leading to a substantial reduction for the number of involved constraints. Our method enjoys the oracle properties as does the full fused lasso based on all pairwise parameter differences. We show that FLAPO gives estimators with smaller error bounds and better finite sample performance than the full fused lasso. We also establish a regularized inference procedure based on bias‐corrected FLAPO. We illustrate our method through both simulation studies and an analysis of HIV surveillance data collected over five geographic regions in China, in which the presence or absence of common covariate effects is reflective to relative effectiveness of regional policies on HIV control and prevention.

Suggested Citation

  • Fei Wang & Lu Wang & Peter X.‐K. Song, 2016. "Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements," Biometrics, The International Biometric Society, vol. 72(4), pages 1184-1193, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1184-1193
    DOI: 10.1111/biom.12496
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12496
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Fei Wang & Lu Wang & Peter X.-K. Song, 2012. "Quadratic inference function approach to merging longitudinal studies: validation and joint estimation," Biometrika, Biometrika Trust, vol. 99(3), pages 755-762.
    6. Dunson, David B. & Xue, Ya & Carin, Lawrence, 2008. "The Matrix Stick-Breaking Process: Flexible Bayes Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 317-327, March.
    7. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    2. Fang, Kuangnan & Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge, 2018. "Integrative sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 1-16.
    3. Yebin Tao & Lu Wang, 2017. "Adaptive contrast weighted learning for multi-stage multi-treatment decision-making," Biometrics, The International Biometric Society, vol. 73(1), pages 145-155, March.
    4. Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    5. Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Lu Tang & Peter X.‐K. Song, 2021. "Poststratification fusion learning in longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 914-928, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    2. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    3. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    4. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    6. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    7. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
    9. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    10. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
    11. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    12. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    13. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    14. Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
    15. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    16. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    17. Lin, Hongmei & Lian, Heng & Liang, Hua, 2019. "Rank reduction for high-dimensional generalized additive models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 672-684.
    18. Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
    19. Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
    20. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1184-1193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.