IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1296-1310.html
   My bibliography  Save this article

An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model

Author

Listed:
  • Ming-Yueh Huang
  • Chin-Tsang Chiang

Abstract

In the exploratory data analysis, the sufficient dimension reduction model has been widely used to characterize the conditional distribution of interest. Different from the existing approaches, our main achievement is to simultaneously estimate two essential elements, basis and structural dimension, of the central subspace and the bandwidth of a kernel distribution estimator through a single estimation criterion. With an appropriate order of kernel function, the proposed estimation procedure can be effectively carried out by starting with a dimension of zero until the first local minimum is reached. Meanwhile, the optimal bandwidth selector is ensured to be a valid tuning parameter for the central subspace estimator. An important advantage of this estimation technique is its flexibility to allow a response to be discrete and some of covariates to be discrete or categorical providing that a certain continuity condition holds. Under very mild assumptions, we further derive the uniform consistency of the introduced optimization function and the consistency of the resulting estimators. Moreover, the asymptotic normality of the central subspace estimator is established with an estimated rather than exact structural dimension. In extensive simulations, the developed approach generally outperforms the competitors. Data from previous studies are also used to illustrate the proposal. On the whole, our methodology is very effective in estimating the central subspace and conditional distribution, highly flexible in adapting diverse types of a response and covariates, and practically feasible in obtaining an asymptotically optimal and valid bandwidth estimator. Supplementary materials for this article are available online.

Suggested Citation

  • Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1296-1310
    DOI: 10.1080/01621459.2016.1215987
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1215987
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1215987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Tsz Ho Yim, 2004. "A crossvalidation method for estimating conditional densities," Biometrika, Biometrika Trust, vol. 91(4), pages 819-834, December.
    2. R. Dennis Cook & Xin Zhang, 2014. "Fused Estimators of the Central Subspace in Sufficient Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 815-827, June.
    3. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    4. Zhu, Yu & Zeng, Peng, 2006. "Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1638-1651, December.
    5. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    6. Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
    7. Bierens, Herman J. & Hartog, Joop, 1988. "Non-linear regression with discrete explanatory variables, with an application to the earnings function," Journal of Econometrics, Elsevier, vol. 38(3), pages 269-299, July.
    8. Francesca Chiaromonte & R. Cook, 2002. "Sufficient Dimension Reduction and Graphics in Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 768-795, December.
    9. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    10. Wang, Hansheng & Xia, Yingcun, 2008. "Sliced Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
    11. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    12. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    13. Zeng, Peng & Zhu, Yu, 2010. "An integral transform method for estimating the central mean and central subspaces," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 271-290, January.
    14. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    15. Allen Edwards & L. Thurstone, 1952. "An internal consistency check for scale values determined by the method of successive intervals," Psychometrika, Springer;The Psychometric Society, vol. 17(2), pages 169-180, June.
    16. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    17. Yuexiao Dong & Bing Li, 2010. "Dimension reduction for non-elliptically distributed predictors: second-order methods," Biometrika, Biometrika Trust, vol. 97(2), pages 279-294.
    18. Zhu, Li-Ping & Zhu, Li-Xing & Feng, Zheng-Hui, 2010. "Dimension Reduction in Regressions Through Cumulative Slicing Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1455-1466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ming-Yueh & Chan, Kwun Chuen Gary, 2018. "Joint sufficient dimension reduction for estimating continuous treatment effect functions," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 48-62.
    2. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2022. "Model selection among Dimension-Reduced generalized Cox models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 492-511, July.
    3. Shao‐Hsuan Wang & Chin‐Tsang Chiang, 2020. "Concordance‐based estimation approaches for the optimal sufficient dimension reduction score," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 662-689, September.
    4. Shih‐Wei Chen & Chin‐Tsang Chiang, 2018. "General single‐index survival regression models for incident and prevalent covariate data and prevalent data without follow‐up," Biometrics, The International Biometric Society, vol. 74(3), pages 881-890, September.
    5. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    3. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    4. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    5. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    8. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    9. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    10. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    11. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    13. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    14. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    15. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.
    16. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    17. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    18. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    19. Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
    20. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1296-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.