IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v35y2017i1p98-109.html
   My bibliography  Save this article

Nonparametric Inference for Time-Varying Coefficient Quantile Regression

Author

Listed:
  • Weichi Wu
  • Zhou Zhou

Abstract

The article considers nonparametric inference for quantile regression models with time-varying coefficients. The errors and covariates of the regression are assumed to belong to a general class of locally stationary processes and are allowed to be cross-dependent. Simultaneous confidence tubes (SCTs) and integrated squared difference tests (ISDTs) are proposed for simultaneous nonparametric inference of the latter models with asymptotically correct coverage probabilities and Type I error rates. Our methodologies are shown to possess certain asymptotically optimal properties. Furthermore, we propose an information criterion that performs consistent model selection for nonparametric quantile regression models of nonstationary time series. For implementation, a wild bootstrap procedure is proposed, which is shown to be robust to the dependent and nonstationary data structure. Our method is applied to studying the asymmetric and time-varying dynamic structures of the U.S. unemployment rate since the 1940s. Supplementary materials for this article are available online.

Suggested Citation

  • Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
  • Handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:98-109
    DOI: 10.1080/07350015.2015.1060884
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1060884
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1060884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lan, 2007. "A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1034-1042, June.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    5. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    6. Orbe, Susan & Ferreira, Eva & Rodriguez-Poo, Juan, 2005. "Nonparametric estimation of time varying parameters under shape restrictions," Journal of Econometrics, Elsevier, vol. 126(1), pages 53-77, May.
    7. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    8. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14, pages 1-24, February.
    9. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    10. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    11. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    12. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    13. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    14. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    15. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, October.
    16. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.
    17. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    18. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    19. Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
    20. Hall, Peter & Titterington, D. M., 1988. "On confidence bands in nonparametric density estimation and regression," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 228-254, October.
    21. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    22. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, October.
    23. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
    2. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Liu, Weiqiang, 2023. "A consistent nonparametric test for the structure change in quantile regression," Economics Letters, Elsevier, vol. 228(C).
    4. Likai Chen & Ekaterina Smetanina & Wei Biao Wu, 2022. "Estimation of nonstationary nonparametric regression model with multiplicative structure [Income and wealth distribution in macroeconomics: A continuous-time approach]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 176-214.
    5. Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
    4. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    5. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    6. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    7. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    8. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
    9. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    10. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    12. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    13. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    14. Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
    15. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    16. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    17. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    18. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    19. Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.
    20. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:98-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.