IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v177y2023ics016794732200161x.html
   My bibliography  Save this article

Sparse spatially clustered coefficient model via adaptive regularization

Author

Listed:
  • Zhong, Yan
  • Sang, Huiyan
  • Cook, Scott J.
  • Kellstedt, Paul M.

Abstract

Large spatial datasets with many spatial covariates have become ubiquitous in many fields in recent years. A question of interest is to identify which covariates are likely to influence a spatial response, and whether and how the effects of these covariates vary across space, including potential abrupt changes from region to region. To solve this question, a new efficient regularized spatially clustered coefficient (RSCC) regression approach is proposed, which could achieve variable selection and identify latent spatially heterogeneous covariate effects with clustered patterns simultaneously. By carefully designing the regularization term of RSCC as a chain graph guided fusion penalty plus a group lasso penalty, the RSCC model is computationally efficient for large spatial datasets while still achieving the theoretical guarantees for estimation. RSCC also adopts the idea of adaptive learning to allow for adaptive weights and adaptive graphs in its regularization terms and further improves the estimation performance. RSCC is applied to study the acceptance of COVID-19 vaccines using county-level data in the United States and discover the determinants of vaccination acceptance with varying effects across counties, revealing important within-state and across-state spatially clustered patterns of covariates effects.

Suggested Citation

  • Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:csdana:v:177:y:2023:i:c:s016794732200161x
    DOI: 10.1016/j.csda.2022.107581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732200161X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Furong Li & Huiyan Sang, 2019. "Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1050-1062, July.
    3. Brian J. Reich & Montserrat Fuentes & Amy H. Herring & Kelly R. Evenson, 2010. "Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression," Biometrics, The International Biometric Society, vol. 66(3), pages 772-782, September.
    4. Smith, Michael & Fahrmeir, Ludwig, 2007. "Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 417-431, June.
    5. Shen, Xiaotong & Huang, Hsin-Cheng, 2010. "Grouping Pursuit Through a Regularization Solution Surface," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 727-739.
    6. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    7. Kenan Li & Nina S. N. Lam, 2018. "Geographically Weighted Elastic Net: A Variable-Selection and Modeling Method under the Spatially Nonstationary Condition," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(6), pages 1582-1600, November.
    8. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    9. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    10. Yei Eun Shin & Huiyan Sang & Dawei Liu & Toby A. Ferguson & Peter X. K. Song, 2019. "Autologistic network model on binary data for disease progression study," Biometrics, The International Biometric Society, vol. 75(4), pages 1310-1320, December.
    11. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
    12. Abolfazl Mollalo & Moosa Tatar, 2021. "Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    14. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    4. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    5. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    6. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    7. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    8. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    9. Caiya Zhang & Yanbiao Xiang, 2016. "On the oracle property of adaptive group Lasso in high-dimensional linear models," Statistical Papers, Springer, vol. 57(1), pages 249-265, March.
    10. Xuan Liu & Jianbao Chen, 2021. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    11. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    12. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    13. Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
    14. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    15. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    16. Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
    17. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
    18. Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
    19. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:177:y:2023:i:c:s016794732200161x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.