IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123283.html
   My bibliography  Save this paper

Penalized Convex Estimation in Dynamic Location-Scale models

Author

Listed:
  • ALAMI CHENTOUFI, Reda

Abstract

This paper introduces a two-step procedure for convex penalized estimation in dynamic location-scale models. The method uses a consistent, non-sparse first-step estimator to construct a convex Weighted Least Squares (WLS) optimization problem compatible with the Least Absolute Shrinkage and Selection Operator (LASSO), addressing challenges associated with non-convexity and enabling efficient, sparse estimation. The consistency and asymptotic distribution of the estimator are established, with finite-sample performance evaluated through Monte Carlo simulations. The method's practical utility is demonstrated through an application to electricity prices in France, Belgium, the Netherlands, and Switzerland, effectively capturing seasonal patterns and external covariates while ensuring model sparsity.

Suggested Citation

  • ALAMI CHENTOUFI, Reda, 2024. "Penalized Convex Estimation in Dynamic Location-Scale models," MPRA Paper 123283, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:123283
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123283/1/MPRA_paper_123283.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Francq & Jean‐Michel Zakoïan, 2009. "Bartlett's formula for a general class of nonlinear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 449-465, July.
    2. Kock, Anders Bredahl, 2016. "Consistent And Conservative Model Selection With The Adaptive Lasso In Stationary And Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 32(1), pages 243-259, February.
    3. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Francq, Christian & Zakoïan, Jean-Michel, 2018. "Estimation risk for the VaR of portfolios driven by semi-parametric multivariate models," Journal of Econometrics, Elsevier, vol. 205(2), pages 381-401.
    6. Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
    7. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    8. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    10. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    11. Benjamin Poignard & Jean-David Fermanian, 2021. "High-dimensional penalized arch processes," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 86-107, January.
    12. Francq, Christian & Thieu, Le Quyen, 2019. "Qml Inference For Volatility Models With Covariates," Econometric Theory, Cambridge University Press, vol. 35(1), pages 37-72, February.
    13. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    14. Nardi, Y. & Rinaldo, A., 2011. "Autoregressive process modeling via the Lasso procedure," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 528-549, March.
    15. Heino Bohn Nielsen & Anders Rahbek, 2024. "Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 107-125.
    16. Frömmel, Michael & Han, Xing & Kratochvil, Stepan, 2014. "Modeling the daily electricity price volatility with realized measures," Energy Economics, Elsevier, vol. 44(C), pages 492-502.
    17. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    18. Chan, Ngai Hang & Yau, Chun Yip & Zhang, Rong-Mao, 2015. "LASSO estimation of threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 285-296.
    19. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted Least Absolute Deviations Estimation For Arma Models With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 23(5), pages 852-879, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    2. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    3. Ben, Youhong & Jiang, Feiyu, 2020. "A note on Portmanteau tests for conditional heteroscedastistic models," Economics Letters, Elsevier, vol. 192(C).
    4. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    5. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    6. Xuanling Yang & Dong Li, 2022. "Estimation of the empirical risk‐return relation: A generalized‐risk‐in‐mean model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 938-963, November.
    7. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    8. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    9. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    10. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    11. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    12. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    13. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    14. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    15. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    16. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    17. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    18. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    19. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    20. Efstathios Polyzos & Costas Siriopoulos, 2024. "Autoregressive Random Forests: Machine Learning and Lag Selection for Financial Research," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 225-262, July.
    21. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    More about this item

    Keywords

    Weighted LSE; LASSO estimation; variable selection; GARCH models;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.