IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i1d10.1007_s10463-015-0532-y.html
   My bibliography  Save this article

Generalized varying coefficient partially linear measurement errors models

Author

Listed:
  • Jun Zhang

    (Shenzhen University)

  • Zhenghui Feng

    (Xiamen University)

  • Peirong Xu

    (Southeast University)

  • Hua Liang

    (George Washington University)

Abstract

We study generalized varying coefficient partially linear models when some linear covariates are error prone, but their ancillary variables are available. We first calibrate the error-prone covariates, then develop a quasi-likelihood-based estimation procedure. To select significant variables in the parametric part, we develop a penalized quasi-likelihood variable selection procedure, and the resulting penalized estimators are shown to be asymptotically normal and have the oracle property. Moreover, to select significant variables in the nonparametric component, we investigate asymptotic behavior of the semiparametric generalized likelihood ratio test. The limiting null distribution is shown to follow a Chi-square distribution, and a new Wilks phenomenon is unveiled in the context of error-prone semiparametric modeling. Simulation studies and a real data analysis are conducted to evaluate the performance of the proposed methods.

Suggested Citation

  • Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0532-y
    DOI: 10.1007/s10463-015-0532-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-015-0532-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-015-0532-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Li, Gaorong & Xue, Liugen & Lian, Heng, 2011. "Semi-varying coefficient models with a diverging number of components," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1166-1174, August.
    3. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    4. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    5. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    6. Peter Hall & Yanyuan Ma, 2007. "Semiparametric estimators of functional measurement error models with unknown error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 429-446, June.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    9. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    10. Iryna Lobach & Raymond J. Carroll & Christine Spinka & Mitchell H. Gail & Nilanjan Chatterjee, 2008. "Haplotype‐Based Regression Analysis and Inference of Case–Control Studies with Unphased Genotypes and Measurement Errors in Environmental Exposures," Biometrics, The International Biometric Society, vol. 64(3), pages 673-684, September.
    11. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    12. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    13. Yingcun Xia, 2004. "Efficient estimation for semivarying-coefficient models," Biometrika, Biometrika Trust, vol. 91(3), pages 661-681, September.
    14. Samiran Sinha & Bani K. Mallick & Victor Kipnis & Raymond J. Carroll, 2010. "Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error," Biometrics, The International Biometric Society, vol. 66(2), pages 444-454, June.
    15. Zhang, Chunming, 2003. "Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 609-628, January.
    16. Grace Y. Yi & Yanyuan Ma & Raymond J. Carroll, 2012. "A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error," Biometrika, Biometrika Trust, vol. 99(1), pages 151-165.
    17. Ma, Yanyuan & Carroll, Raymond J., 2006. "Locally Efficient Estimators for Semiparametric Models With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1465-1474, December.
    18. Raymond J. Carroll & Yuedong Wang, 2008. "Nonparametric variance estimation in the analysis of microarray data: a measurement error approach," Biometrika, Biometrika Trust, vol. 95(2), pages 437-449.
    19. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shouqiang & Yu, Mengjing & Li, Miao & Xu, Qingzhen, 2019. "The research of virtual face based on Deep Convolutional Generative Adversarial Networks using TensorFlow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 667-680.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    2. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
    3. Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
    4. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    5. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    6. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    7. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    8. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    9. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.
    10. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    11. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    12. Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
    13. Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.
    14. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
    15. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    16. Garcia, Tanya P. & Ma, Yanyuan, 2017. "Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models," Journal of Econometrics, Elsevier, vol. 200(2), pages 194-206.
    17. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    18. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    19. Mingqiu Wang & Peixin Zhao & Xiaoning Kang, 2020. "Structure identification for varying coefficient models with measurement errors based on kernel smoothing," Statistical Papers, Springer, vol. 61(5), pages 1841-1857, October.
    20. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:1:d:10.1007_s10463-015-0532-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.