IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v192y2022ics0047259x22000793.html
   My bibliography  Save this article

Estimation of functional-coefficient autoregressive models with measurement error

Author

Listed:
  • Geng, Pei

Abstract

The functional-coefficient autoregressive (FAR) models are flexible to fit nonlinear features in time series data with covariates. Cai et al. (2000) developed an effective local linear estimation procedure under the FAR framework. When the time series data are observed with measurement error, we first derive the asymptotic bias of the naive local linear estimator (LLE) by ignoring the measurement error. Then, we propose a bias-corrected local linear estimation procedure for both the functional coefficients and the autoregressive error variance. Through simulation study, we present that the naive LLE is biased while the proposed estimation method shows superior performance with much reduced bias under various choices of FAR model settings. Furthermore, sensitivity analysis shows the robustness of the proposed estimator under a chosen misspecified measurement error model. The asymptotic properties of the bias-corrected estimators are also established. At last, the proposed approach is applied to a cybersecurity real data example.

Suggested Citation

  • Geng, Pei, 2022. "Estimation of functional-coefficient autoregressive models with measurement error," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000793
    DOI: 10.1016/j.jmva.2022.105077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aruoba, S. Borağan & Diebold, Francis X. & Nalewaik, Jeremy & Schorfheide, Frank & Song, Dongho, 2016. "Improving GDP measurement: A measurement-error perspective," Journal of Econometrics, Elsevier, vol. 191(2), pages 384-397.
    2. Dominik Wied & Rafael Weißbach, 2012. "Consistency of the kernel density estimator: a survey," Statistical Papers, Springer, vol. 53(1), pages 1-21, February.
    3. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    4. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    5. Liang Li & Tom Greene, 2008. "Varying Coefficients Model with Measurement Error," Biometrics, The International Biometric Society, vol. 64(2), pages 519-526, June.
    6. Jianhua Z. Huang & Haipeng Shen, 2004. "Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 515-534, December.
    7. Staudenmayer, John & Buonaccorsi, John P., 2005. "Measurement Error in Linear Autoregressive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 841-852, September.
    8. Ashley, Richard & Vaughan, David, 1986. "Measuring Measurement Error in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 95-103, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    2. Yan-Yong Zhao & Jin-Guan Lin & Hong-Xia Wang & Xing-Fang Huang, 2017. "Jump-detection-based estimation in time-varying coefficient models and empirical applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 574-599, September.
    3. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    4. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    5. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    6. Harvill, Jane L. & Ray, Bonnie K., 2005. "A note on multi-step forecasting with functional coefficient autoregressive models," International Journal of Forecasting, Elsevier, vol. 21(4), pages 717-727.
    7. Delgado, Miguel A. & Arteaga-Molina, Luis A., 2021. "Testing constancy in varying coefficient models," Journal of Econometrics, Elsevier, vol. 222(1), pages 625-644.
    8. Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
    9. Yan Li & Liangjun Su & Yuewu Xu, 2015. "A Combined Approach to the Inference of Conditional Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 203-220, April.
    10. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    11. Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
    12. Cao, Yanrong & Lin, Haiqun & Wu, Tracy Z. & Yu, Yan, 2010. "Penalized spline estimation for functional coefficient regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 891-905, April.
    13. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    14. Harvill, Jane L. & Ray, Bonnie K., 2006. "Functional coefficient autoregressive models for vector time series," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3547-3566, August.
    15. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    16. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    17. Lenin Arango-Castillo & Francisco J. Martínez-Ramírez & María José Orraca, 2024. "Univariate Measures of Persistence: A Comparative Analysis," Working Papers 2024-11, Banco de México.
    18. Mingqiu Wang & Peixin Zhao & Xiaoning Kang, 2020. "Structure identification for varying coefficient models with measurement errors based on kernel smoothing," Statistical Papers, Springer, vol. 61(5), pages 1841-1857, October.
    19. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    20. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.