IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v14y2020i2d10.1007_s11634-020-00392-w.html
   My bibliography  Save this article

Semiparametric mixtures of regressions with single-index for model based clustering

Author

Listed:
  • Sijia Xiang

    (Zhejiang University of Finance & Economics)

  • Weixin Yao

    (University of California)

Abstract

In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models are indeed special cases of the new models. Backfitting estimates and the corresponding modified EM algorithms are proposed to achieve optimal convergence rates for both parametric and nonparametric parts. We establish the identifiability results of the proposed two models and investigate the asymptotic properties of the proposed estimation procedures. Simulation studies are conducted to demonstrate the finite sample performance of the proposed models. Two real data applications using the new models reveal some interesting findings.

Suggested Citation

  • Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
  • Handle: RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-020-00392-w
    DOI: 10.1007/s11634-020-00392-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-020-00392-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-020-00392-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young, D.S. & Hunter, D.R., 2010. "Mixtures of regressions with predictor-dependent mixing proportions," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2253-2266, October.
    2. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    3. Wang, Shaoli & Yao, Weixin & Huang, Mian, 2014. "A note on the identifiability of nonparametric and semiparametric mixtures of GLMs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 41-45.
    4. Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
    5. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    6. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    7. Mian Huang & Weixin Yao, 2012. "Mixture of Regression Models With Varying Mixing Proportions: A Semiparametric Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 711-724, June.
    8. Wang, Hansheng & Xia, Yingcun, 2008. "Sliced Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
    9. Weixin Yao & Debmalya Nandy & Bruce G. Lindsay & Francesca Chiaromonte, 2019. "Covariate Information Matrix for Sufficient Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1752-1764, October.
    10. Mian Huang & Runze Li & Hansheng Wang & Weixin Yao, 2014. "Estimating Mixture of Gaussian Processes by Kernel Smoothing," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 259-270, April.
    11. Mian Huang & Runze Li & Shaoli Wang, 2013. "Nonparametric Mixture of Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 929-941, September.
    12. Li, Pengfei & Chen, Jiahua, 2010. "Testing the Order of a Finite Mixture," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1084-1092.
    13. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    14. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    15. Yao, Weixin & Lindsay, Bruce G., 2009. "Bayesian Mixture Labeling by Highest Posterior Density," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 758-767.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    2. Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.
    2. Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
    3. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    4. You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    5. Yanyuan Ma & Shaoli Wang & Lin Xu & Weixin Yao, 2021. "Semiparametric mixture regression with unspecified error distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 429-444, June.
    6. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    7. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    8. Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    9. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    10. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    11. Wang, Shaoli & Huang, Mian & Wu, Xing & Yao, Weixin, 2016. "Mixture of functional linear models and its application to CO2-GDP functional data," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 1-15.
    12. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    13. Wang, Shaoli & Yao, Weixin & Huang, Mian, 2014. "A note on the identifiability of nonparametric and semiparametric mixtures of GLMs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 41-45.
    14. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    15. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    16. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
    17. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    18. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    19. Jia-Chiun Pan & Guan-Hua Huang, 2014. "Bayesian Inferences of Latent Class Models with an Unknown Number of Classes," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 621-646, October.
    20. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-020-00392-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.