A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2012.03.039
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
- De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
- Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010.
"Quantile and Probability Curves Without Crossing,"
Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Post-Print hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and Probability Curves Without Crossing," Papers 0704.3649, arXiv.org, revised Jul 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile And Probability Curves Without Crossing," Boston University - Department of Economics - Working Papers Series WP2007-011, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," SciencePo Working papers Main hal-01052958, HAL.
- Horowitz, Joel L. & Lee, Sokbae, 2005.
"Nonparametric Estimation of an Additive Quantile Regression Model,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers CWP07/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers 07/04, Institute for Fiscal Studies.
- Sokbae Lee & Joel L. Horowitz, 2004. "Nonparametric Estimation of an Additive Quantile Regression Model," Econometric Society 2004 Far Eastern Meetings 721, Econometric Society.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
- Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
- Lin, Hongmei & Lian, Heng & Liang, Hua, 2019. "Rank reduction for high-dimensional generalized additive models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 672-684.
- Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
- Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.
- Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
- Joel L. Horowitz & Lars Nesheim, 2018.
"Using penalized likelihood to select parameters in a random coefficients multinomial logit model,"
CeMMAP working papers
CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joel L. Horowitz & Lars Nesheim, 2019. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP50/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
Keywords
Bayesian information criterion (BIC); Quantile regression; SCAD penalty; Schwarz information criterion (SIC);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1224-1228. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.