IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.01033.html
   My bibliography  Save this paper

Expected Shortfall LASSO

Author

Listed:
  • Sander Barendse

Abstract

We propose an $\ell_1$-penalized estimator for high-dimensional models of Expected Shortfall (ES). The estimator is obtained as the solution to a least-squares problem for an auxiliary dependent variable, which is defined as a transformation of the dependent variable and a pre-estimated tail quantile. Leveraging a sparsity condition, we derive a nonasymptotic bound on the prediction and estimator errors of the ES estimator, accounting for the estimation error in the dependent variable, and provide conditions under which the estimator is consistent. Our estimator is applicable to heavy-tailed time-series data and we find that the amount of parameters in the model may grow with the sample size at a rate that depends on the dependence and heavy-tailedness in the data. In an empirical application, we consider the systemic risk measure CoES and consider a set of regressors that consists of nonlinear transformations of a set of state variables. We find that the nonlinear model outperforms an unpenalized and untransformed benchmark considerably.

Suggested Citation

  • Sander Barendse, 2023. "Expected Shortfall LASSO," Papers 2307.01033, arXiv.org, revised Jan 2024.
  • Handle: RePEc:arx:papers:2307.01033
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.01033
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    3. Yoshimasa Uematsu & Shinya Tanaka, 2019. "High†dimensional macroeconomic forecasting and variable selection via penalized regression," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 34-56.
    4. Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
    5. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    6. Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
    7. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    8. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    9. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    10. Nardi, Y. & Rinaldo, A., 2011. "Autoregressive process modeling via the Lasso procedure," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 528-549, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    2. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    3. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    4. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    5. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    6. Marcelo C. Medeiros & Eduardo F. Mendes, 2017. "Adaptive LASSO estimation for ARDL models with GARCH innovations," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
    7. Marcelo C. Medeiros & Eduardo F. Mendes, 2012. "Estimating High-Dimensional Time Series Models," CREATES Research Papers 2012-37, Department of Economics and Business Economics, Aarhus University.
    8. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
    9. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    10. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    11. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    12. Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
    13. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    14. Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
    15. Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
    16. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    17. Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
    18. Zhu, Ke & Liu, Hanzhong, 2022. "Confidence intervals for parameters in high-dimensional sparse vector autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Robert Adamek & Stephan Smeekes & Ines Wilms, 2023. "Sparse High-Dimensional Vector Autoregressive Bootstrap," Papers 2302.01233, arXiv.org.
    20. Yujie Xue & Masanobu Taniguchi, 2020. "Modified LASSO estimators for time series regression models with dependent disturbances," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 845-869, December.
    21. Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.01033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.