IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i3d10.1007_s11203-018-9191-y.html
   My bibliography  Save this article

The Dantzig selector for a linear model of diffusion processes

Author

Listed:
  • Kou Fujimori

    (Waseda University)

Abstract

In this paper, a linear model of diffusion processes with unknown drift and diagonal diffusion matrices is discussed. We will consider the estimation problems for unknown parameters based on the discrete time observation in high-dimensional and sparse settings. To estimate drift matrices, the Dantzig selector which was proposed by Candés and Tao in 2007 will be applied. We will prove two types of consistency of the Dantzig selector for the drift matrix; one is the consistency in the sense of $$l_q$$ l q norm for every $$q \in [1,\infty ]$$ q ∈ [ 1 , ∞ ] and another is the variable selection consistency. Moreover, we will construct an asymptotically normal estimator for the drift matrix by using the variable selection consistency of the Dantzig selector.

Suggested Citation

  • Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-018-9191-y
    DOI: 10.1007/s11203-018-9191-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-9191-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-018-9191-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmanuel Gobet & Gustaw Matulewicz, 2017. "Parameter estimation of Ornstein–Uhlenbeck process generating a stochastic graph," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 211-235, July.
    2. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    3. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    4. De Gregorio, Alessandro & Iacus, Stefano M., 2012. "Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 28(4), pages 838-860, August.
    5. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    6. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlad Stefan Barbu & Slim Beltaief & Serguei Pergamenchtchikov, 2022. "Adaptive efficient estimation for generalized semi-Markov big data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 925-955, October.
    2. Kou Fujimori, 2022. "The variable selection by the Dantzig selector for Cox’s proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 515-537, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    2. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
    3. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    4. Haruhiko Inatsugu & Nakahiro Yoshida, 2021. "Global jump filters and quasi-likelihood analysis for volatility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 555-598, June.
    5. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
    6. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    7. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    8. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    9. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    10. Junichiro Yoshida & Nakahiro Yoshida, 2024. "Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 711-763, October.
    11. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
    12. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    13. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    14. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
    15. Papanicolaou, Alex & Giesecke, Kay, 2016. "Variation-based tests for volatility misspecification," Journal of Econometrics, Elsevier, vol. 191(1), pages 217-230.
    16. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    17. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    18. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    19. Masuda, Hiroki, 2013. "Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2752-2778.
    20. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-018-9191-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.