Exponentially tilted likelihood inference on growing dimensional unconditional moment models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2017.08.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Chenlei Leng & Cheng Yong Tang, 2012. "Penalized empirical likelihood and growing dimensional general estimating equations," Biometrika, Biometrika Trust, vol. 99(3), pages 703-716.
- Whitney K. Newey & Richard J. Smith, 2004.
"Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators,"
Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
- Whitney K. Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hongtu Zhu & Haibo Zhou & Jiahua Chen & Yimei Li & Jeffrey Lieberman & Martin Styner, 2009. "Adjusted Exponentially Tilted Likelihood with Applications to Brain Morphology," Biometrics, The International Biometric Society, vol. 65(3), pages 919-927, September.
- Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015.
"High dimensional generalized empirical likelihood for moment restrictions with dependent data,"
Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2014. "High Dimensional Generalized Empirical Likelihood for Moment Restrictions with Dependent Data," MPRA Paper 59640, University Library of Munich, Germany.
- W. Lu & Y. Goldberg & J. P. Fine, 2012. "On the robustness of the adaptive lasso to model misspecification," Biometrika, Biometrika Trust, vol. 99(3), pages 717-731.
- S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011.
"Nonparametric Instrumental Regression,"
Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
- Serge Darolles & Jean-Pierre Florens & Eric Renault, 2000. "Nonparametric Instrumental Regression," Working Papers 2000-17, Center for Research in Economics and Statistics.
- Darolles, Serge & Fan, Yanqin & Florens, Jean-Pierre & Renault, Eric, 2003. "Non Parametric Instrumental Regression," IDEI Working Papers 228, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2010.
- DAROLLES, Serge & FLORENS, Jean-Pierre & RENAULT, Éric, 2002. "Nonparametric Instrumental Regression," Cahiers de recherche 2002-05, Universite de Montreal, Departement de sciences economiques.
- Serge Darolles & Jean-Pierre Florens & Yanqin Fan & Eric Renault, 2011. "Nonparametric Instrumental Regression," Post-Print halshs-00677716, HAL.
- Hongtu Zhu & Joseph G. Ibrahim & Niansheng Tang & Heping Zhang, 2008. "Diagnostic measures for empirical likelihood of general estimating equations," Biometrika, Biometrika Trust, vol. 95(2), pages 489-507.
- Douglas Staiger & James H. Stock, 1997.
"Instrumental Variables Regression with Weak Instruments,"
Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
- Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
- Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
- Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
- Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998.
"Information Theoretic Approaches to Inference in Moment Condition Models,"
Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
- Guido W Imbens, Phillip Johnson & Richard H Spady, "undated". "Information theoretic approaches to inference in moment condition model," Economics Papers W12., Economics Group, Nuffield College, University of Oxford.
- Guido W. Imbens & Phillip Johnson & Richard H. Spady, 1995. "Information Theoretic Approaches to Inference in Moment Condition Models," Harvard Institute of Economic Research Working Papers 1736, Harvard - Institute of Economic Research.
- Imbens, G.W. & Johnson, P. & Spady, R.H., 1995. "Information Theoretic Approaches to Inference in Movement Condition Models," Economics Papers 99, Economics Group, Nuffield College, University of Oxford.
- Guido W. Imbens & Phillip Johnson & Richard H. Spady, 1995. "Information Theoretic Approaches to Inference in Moment Condition Models," NBER Technical Working Papers 0186, National Bureau of Economic Research, Inc.
- Xiaohong Chen & Demian Pouzo, 2012.
"Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals,"
Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
- Xiaohong Chen & Demian Pouzo, 2008. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Cowles Foundation Discussion Papers 1650R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2009.
- Xiaohong Chen & Demian Pouzo, 2008. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Cowles Foundation Discussion Papers 1650RR, Cowles Foundation for Research in Economics, Yale University, revised Jan 2011.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Lam, Clifford & Fan, Jianqing, 2008. "Profile-kernel likelihood inference with diverging number of parameters," LSE Research Online Documents on Economics 31548, London School of Economics and Political Science, LSE Library.
- Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
- Mehmet Caner, 2010.
"Exponential Tilting with Weak Instruments: Estimation and Testing,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 307-325, June.
- Mehmet Caner, 2005. "Exponential Tilting with Weak Instruments: Estimation and Testing," Econometrics 0509017, University Library of Munich, Germany.
- Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
- Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
- Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
- Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015.
"High dimensional generalized empirical likelihood for moment restrictions with dependent data,"
Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
- Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2014. "High Dimensional Generalized Empirical Likelihood for Moment Restrictions with Dependent Data," MPRA Paper 59640, University Library of Munich, Germany.
- Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023.
"High dimensional semiparametric moment restriction models,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2017. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 17/17, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP69/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP04/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 23/18, Monash University, Department of Econometrics and Business Statistics.
- Dong, C. & Gao, J. & Linton, O., 2018. "High Dimensional Semiparametric Moment Restriction Models," Cambridge Working Papers in Economics 1881, Faculty of Economics, University of Cambridge.
- Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
- Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
- Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.
- Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
- Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
- Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
- Jean-Pierre Florens & Anna Simoni, 2021.
"Gaussian Processes and Bayesian Moment Estimation,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
- Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.
- Jean-Pierre Florens & Anna Simoni, 2019. "Gaussian Processes and Bayesian Moment Estimation," Post-Print hal-02903252, HAL.
- Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
- Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
- Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
- Guggenberger, Patrik & Smith, Richard J., 2005.
"Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification,"
Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
- Patrik Buggenberger & Richard Smith, 2003. "Generalized empirical likelihood estimators and tests under partial, weak and strong identification," CeMMAP working papers CWP08/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
- Abdul Wahid & Dost Muhammad Khan & Ijaz Hussain, 2017. "Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
- Cui, Li-E & Zhao, Puying & Tang, Niansheng, 2022. "Generalized empirical likelihood for nonsmooth estimating equations with missing data," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
More about this item
Keywords
Growing-dimensional data analysis; Model misspecification; Moment unconditional models; Penalized exponentially tilted likelihood; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:202:y:2018:i:1:p:57-74. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.