IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i1p63-78.html
   My bibliography  Save this article

Regression coefficient and autoregressive order shrinkage and selection via the lasso

Author

Listed:
  • Hansheng Wang
  • Guodong Li
  • Chih‐Ling Tsai

Abstract

Summary. The least absolute shrinkage and selection operator (‘lasso’) has been widely used in regression shrinkage and selection. We extend its application to the regression model with autoregressive errors. Two types of lasso estimators are carefully studied. The first is similar to the traditional lasso estimator with only two tuning parameters (one for regression coefficients and the other for autoregression coefficients). These tuning parameters can be easily calculated via a data‐driven method, but the resulting lasso estimator may not be fully efficient. To overcome this limitation, we propose a second lasso estimator which uses different tuning parameters for each coefficient. We show that this modified lasso can produce the estimator as efficiently as the oracle. Moreover, we propose an algorithm for tuning parameter estimates to obtain the modified lasso estimator. Simulation studies demonstrate that the modified estimator is superior to the traditional estimator. One empirical example is also presented to illustrate the usefulness of lasso estimators. The extension of the lasso to the autoregression with exogenous variables model is briefly discussed.

Suggested Citation

  • Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:63-78
    DOI: 10.1111/j.1467-9868.2007.00577.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00577.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00577.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:63-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.