IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p798-812.html
   My bibliography  Save this article

Empirical Likelihood for Censored Linear Regression and Variable Selection

Author

Listed:
  • Tong Tong Wu
  • Gang Li
  • Chengyong Tang

Abstract

type="main" xml:id="sjos12137-abs-0001"> The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non-parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non-differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non-differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset.

Suggested Citation

  • Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:798-812
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12137
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    2. Zhou, Mai & Li, Gang, 2008. "Empirical likelihood analysis of the Buckley-James estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 649-664, April.
    3. Chenlei Leng & Cheng Yong Tang, 2012. "Penalized empirical likelihood and growing dimensional general estimating equations," Biometrika, Biometrika Trust, vol. 99(3), pages 703-716.
    4. Yichuan Zhao & Song Yang, 2012. "Empirical likelihood confidence intervals for regression parameters of the survival rate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 59-70.
    5. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    6. Gang Li & Xuyang Lu, 2009. "Comments on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 463-467, November.
    7. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    9. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    10. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    11. Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
    12. Gengsheng Qin & Bing‐Yi Jing, 2001. "Empirical Likelihood for Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 661-673, December.
    13. Mai Zhou, 2005. "Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model," Biometrika, Biometrika Trust, vol. 92(2), pages 492-498, June.
    14. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.
    15. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    16. Song Xi Chen & Hengjian Cui, 2006. "On Bartlett correction of empirical likelihood in the presence of nuisance parameters," Biometrika, Biometrika Trust, vol. 93(1), pages 215-220, March.
    17. Song Xi Chen & Liang Peng & Ying-Li Qin, 2009. "Effects of data dimension on empirical likelihood," Biometrika, Biometrika Trust, vol. 96(3), pages 711-722.
    18. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    2. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    3. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    2. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    3. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    4. Hong Guo & Changliang Zou & Zhaojun Wang & Bin Chen, 2014. "Empirical likelihood for high-dimensional linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(7), pages 921-945, October.
    5. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    6. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2017. "Empirical likelihood ratio in penalty form and the convex hull problem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 507-529, November.
    7. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    8. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    9. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    10. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    11. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    12. Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
    13. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    14. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    15. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    16. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    17. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    18. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    19. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    20. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    21. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:798-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.