Using penalized likelihood to select parameters in a random coefficients multinomial logit model
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Joel L. Horowitz & Lars Nesheim, 2019. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP50/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
- Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
- Geweke, John & Keane, Michael P & Runkle, David, 1994.
"Alternative Computational Approaches to Inference in the Multinomial Probit Model,"
The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
- John Geweke & Michael P. Keane & David E. Runkle, 1994. "Alternative computational approaches to inference in the multinomial probit model," Staff Report 170, Federal Reserve Bank of Minneapolis.
- Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- Rachel Griffith & Lars Nesheim & Martin O'Connell, 2018.
"Income effects and the welfare consequences of tax in differentiated product oligopoly,"
Quantitative Economics, Econometric Society, vol. 9(1), pages 305-341, March.
- Griffith, Rachel & Nesheim, Lars & O'Connell, Martin, 2015. "Income effects and the welfare consequences of tax in differentiated product oligopoly," CEPR Discussion Papers 10670, C.E.P.R. Discussion Papers.
- Rachel Griffith & Lars Nesheim & Martin O'Connell, 2015. "Income effects and the welfare consequences of tax in differentiated product oligopoly," CeMMAP working papers 23/15, Institute for Fiscal Studies.
- Rachel Griffith & Lars Nesheim & Martin O'Connell, 2015. "Income effects and the welfare consequences of tax in differentiated product oligopoly," CeMMAP working papers CWP23/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Christopher R. Knittel & Konstantinos Metaxoglou, 2014. "Estimation of Random-Coefficient Demand Models: Two Empiricists' Perspective," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 34-59, March.
- Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996.
"Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results,"
Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
- Vassilis A. Hajivassiliou & Daniel L. McFadden & Paul Ruud, 1993. "Simulation of Multivariate Normal Rectangle Probabilities and their Derivatives: Theoretical and Computational Results," Working Papers _024, Yale University.
- Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521747387, January.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Geweke, John & Keane, Michael, 2001. "Computationally intensive methods for integration in econometrics," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 56, pages 3463-3568, Elsevier.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
- Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers CWP35/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
- Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salanié, Bernard & Wolak, Frank, 2018. "Fast, “Robust†, and Approximately Correct: Estimating Mixed Demand Systems," CEPR Discussion Papers 13236, C.E.P.R. Discussion Papers.
- Bernard Salanie & Frank A. Wolak, 2018.
"Fast, "robust", and approximately correct: estimating mixed demand systems,"
CeMMAP working papers
CWP64/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bernard Salanié & Frank A. Wolak, 2019. "Fast, "Robust", and Approximately Correct: Estimating Mixed Demand Systems," NBER Working Papers 25726, National Bureau of Economic Research, Inc.
- Escanciano, Juan Carlos, 2023.
"Irregular identification of structural models with nonparametric unobserved heterogeneity,"
Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
- Juan Carlos Escanciano, 2020. "Irregular Identification of Structural Models with Nonparametric Unobserved Heterogeneity," Papers 2005.08611, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
- Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
- Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Maruyama, Shiko, 2014.
"Estimation of finite sequential games,"
Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
- Shiko Maruyama, 2010. "Estimation of Finite Sequential Games," Discussion Papers 2010-22, School of Economics, The University of New South Wales.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
- Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Fei Wang & Lu Wang & Peter X.‐K. Song, 2016. "Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements," Biometrics, The International Biometric Society, vol. 72(4), pages 1184-1193, December.
- Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
- Cohen, Michael, 2010. "A Structured Covariance Probit Demand Model," Research Reports 149970, University of Connecticut, Food Marketing Policy Center.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
- Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020.
"The order of variables, simulation noise, and accuracy of mixed logit estimates,"
Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
- Palma, Marco & Li, Yajuan & Vedenov, Dmitry & Bessler, David, 2016. "The Order of Variables, Simulation Noise and Accuracy of Mixed Logit Estimates," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235990, Agricultural and Applied Economics Association.
- Islam, Mouyid, 2015. "Multi-Vehicle Crashes Involving Large Trucks: A Random Parameter Discrete Outcome Modeling Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(1).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DCM-2018-07-23 (Discrete Choice Models)
- NEP-ECM-2018-07-23 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:29/18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.