IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v168y2022ics0167947321002243.html
   My bibliography  Save this article

Fusing sufficient dimension reduction with neural networks

Author

Listed:
  • Kapla, Daniel
  • Fertl, Lukas
  • Bura, Efstathia

Abstract

Neural networks are combined with sufficient dimension reduction methodology in order to remove the limitation of small p and n of the latter. NN-SDR applies when the dependence of the response Y on a set of predictors X is fully captured by the regression function g(B′X), for an unknown function g and low rank parameter B matrix. It is shown that the proposed estimator is on par with competing sufficient dimension reduction methods, such as minimum average variance estimation and conditional variance estimation, in small p and n settings in simulations. Its main advantage is its scalability in regressions with large data, for which the other methods are infeasible.

Suggested Citation

  • Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002243
    DOI: 10.1016/j.csda.2021.107390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321002243
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    2. Efstathia Bura & Sabrina Duarte & Liliana Forzani, 2016. "Sufficient Reductions in Regressions With Exponential Family Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1313-1329, July.
    3. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    4. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    5. Efstathia Bura & R. Dennis Cook, 2001. "Estimating the structural dimension of regressions via parametric inverse regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 393-410.
    6. Weisberg, Sanford, 2002. "Dimension Reduction Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i01).
    7. Wang, Hansheng & Xia, Yingcun, 2008. "Sliced Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
    8. Saralees Nadarajah, 2005. "A generalized normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 685-694.
    9. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    10. Efstathia Bura & Liliana Forzani, 2015. "Sufficient Reductions in Regressions With Elliptically Contoured Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 420-434, March.
    11. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Zhao, Junlong, 2024. "Group variable selection via group sparse neural network," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    2. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    5. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    6. Forzani, Liliana & Rodriguez, Daniela & Smucler, Ezequiel & Sued, Mariela, 2019. "Sufficient dimension reduction and prediction in regression: Asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 339-349.
    7. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    8. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    9. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    10. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    12. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    13. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    14. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
    15. repec:jss:jstsof:39:i03 is not listed on IDEAS
    16. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    17. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    18. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    19. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    20. Szretter Noste, María Eugenia, 2019. "Using DAGs to identify the sufficient dimension reduction in the Principal Fitted Components model," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 317-320.
    21. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.