On the empirical characteristic function process of the residuals in GARCH models and applications
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-014-0359-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
- Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
- Muneya Matsui & Akimichi Takemura, 2005. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 183-199, March.
- Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
- Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Escanciano, Juan Carlos, 2009. "Quasi-Maximum Likelihood Estimation Of Semi-Strong Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 561-570, April.
- Huang, Da & Wang, Hansheng & Yao, Qiwei, 2008. "Estimating GARCH models: when to use what?," LSE Research Online Documents on Economics 5398, London School of Economics and Political Science, LSE Library.
- Bai, Jushan & Chen, Zhihong, 2008. "Testing multivariate distributions in GARCH models," Journal of Econometrics, Elsevier, vol. 143(1), pages 19-36, March.
- Da Huang & Hansheng Wang & Qiwei Yao, 2008. "Estimating GARCH models: when to use what?," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 27-38, March.
- L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- Kundu, Subrata & Majumdar, Suman & Mukherjee, Kanchan, 2000. "Central Limit Theorems revisited," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 265-275, April.
- Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
- Hira Koul & Nao Mimoto, 2012. "A goodness-of-fit test for GARCH innovation density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 127-149, January.
- Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
- Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004.
"The Use of GARCH Models in VaR Estimation,"
MPRA Paper
96332, University Library of Munich, Germany.
- Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2010. "The Use of GARCH Models in VaR Estimation," Working Papers 0048, University of Peloponnese, Department of Economics.
- Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
- Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
- Marie Hušková & Simos Meintanis, 2010. "Tests for the error distribution in nonparametric possibly heteroscedastic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 92-112, May.
- Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
- Mimoto, Nao, 2008. "Convergence in distribution for the sup-norm of a kernel density estimator for GARCH innovations," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 915-923, May.
- Marie Hušková & Simos Meintanis, 2008. "Tests for the multivariate -sample problem based on the empirical characteristic function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 263-277.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- James S. Allison & Charl Pretorius, 2017. "A Monte Carlo evaluation of the performance of two new tests for symmetry," Computational Statistics, Springer, vol. 32(4), pages 1323-1338, December.
- M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
- Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
- Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
- Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
- Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
- Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
- Ivanović, Blagoje & Milošević, Bojana & Obradović, Marko, 2020. "Comparison of symmetry tests against some skew-symmetric alternatives in i.i.d. and non-i.i.d. setting," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
- Preminger, Arie & Storti, Giuseppe, 2014.
"Least squares estimation for GARCH (1,1) model with heavy tailed errors,"
MPRA Paper
59082, University Library of Munich, Germany.
- PREMINGER Arie & STORTI Giuseppe, 2017. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," LIDAM Discussion Papers CORE 2017015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
- Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
- Zhu, Ke & Li, Wai Keung, 2013.
"A new Pearson-type QMLE for conditionally heteroskedastic models,"
MPRA Paper
52344, University Library of Munich, Germany.
- Zhu, Ke & Li, Wai Keung, 2014. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52732, University Library of Munich, Germany.
- Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
- Christian Francq & Jean-Michel Zakoïan, 2013.
"Optimal predictions of powers of conditionally heteroscedastic processes,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
- Francq, Christian & Zakoian, Jean-Michel, 2010. "Optimal predictions of powers of conditionally heteroskedastic processes," MPRA Paper 22155, University Library of Munich, Germany.
- Christan Francq & Jean-Michel Zakoian, 2012. "Optimal Predictions of Powers of Conditionally Heteroskedastic Processes," Working Papers 2012-17, Center for Research in Economics and Statistics.
- Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
- Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
- Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
- Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
- Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
- Hill, Jonathan B. & Prokhorov, Artem, 2016.
"GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
- Hill, Jonathan B. & Prokhorov, Artem, 2015. "GEL Estimation for Heavy-Tailed GARCH Models with Robust Empirical Likelihood Inference," Working Papers 2015-03, University of Sydney Business School, Discipline of Business Analytics.
- Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
- Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
- Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
- Koo, Bonsoo & Linton, Oliver, 2015.
"Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models,"
Econometric Theory, Cambridge University Press, vol. 31(4), pages 671-702, August.
- Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers CWP11/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers 11/13, Institute for Fiscal Studies.
- Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
- Chen, Min & Zhu, Ke, 2013. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," MPRA Paper 50487, University Library of Munich, Germany.
More about this item
Keywords
GARCH; Residuals; Empirical characteristic function; Symmetry; Goodness-of-fit; Bootstrap; 60F05; 60E05; 62M10; 62F40;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:2:p:409-432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.