IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p855-862.html
   My bibliography  Save this article

Statistical inference in a growth curve quantile regression model for longitudinal data

Author

Listed:
  • Hyunkeun Ryan Cho

Abstract

This article describes a polynomial growth curve quantile regression model that provides a comprehensive assessment about the treatment effects on the changes of the distribution of outcomes over time. The proposed model has the flexibility, as it allows the degree of a polynomial to vary across quantiles. A high degree polynomial model fits the data adequately, yet it is not desirable due to the complexity of the model. We propose the model selection criterion based on an empirical loglikelihood that consistently identifies the optimal degree of a polynomial at each quantile. After the parsimonious model is fitted to the data, the hypothesis test is further developed to evaluate the treatment effects by comparing the growth curves. It is shown that the proposed empirical loglikelihood ratio test statistic follows a chi‐square distribution asymptotically under the null hypothesis. Various simulation studies confirm that the proposed test successfully detects the difference between the curves across quantiles. When the empirical loglikelihood is employed, we incorporate the within‐subject correlation commonly existing in longitudinal data and gain estimation efficiency of the quantile regression parameters in the growth curve model. The proposed process is illustrated through the analysis of randomized controlled longitudinal depression data.

Suggested Citation

  • Hyunkeun Ryan Cho, 2018. "Statistical inference in a growth curve quantile regression model for longitudinal data," Biometrics, The International Biometric Society, vol. 74(3), pages 855-862, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:855-862
    DOI: 10.1111/biom.12821
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12821
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Cheng Yong Tang & Chenlei Leng, 2011. "Empirical likelihood and quantile regression in longitudinal data analysis," Biometrika, Biometrika Trust, vol. 98(4), pages 1001-1006.
    4. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    5. Jianhui Zhou & Annie Qu, 2012. "Informative Estimation and Selection of Correlation Structure for Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 701-710, June.
    6. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    7. Grace Y. Yi & Wenqing He, 2009. "Median Regression Models for Longitudinal Data with Dropouts," Biometrics, The International Biometric Society, vol. 65(2), pages 618-625, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yaohong & Wang, Lei & Liu, Jiamin & Li, Rui & Lian, Heng, 2023. "Communication-efficient estimation of quantile matrix regression for massive datasets," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    2. Cho, Hyunkeun & Kim, Seonjin & Kim, Mi-Ok, 2017. "Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 334-343.
    3. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    4. Fu, Liya & Wang, You-Gan & Zhu, Min, 2015. "A Gaussian pseudolikelihood approach for quantile regression with repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 41-53.
    5. Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
    6. Jang, Woosung & Wang, Huixia Judy, 2015. "A semiparametric Bayesian approach for joint-quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 99-115.
    7. Xiaoming Lu & Zhaozhi Fan, 2020. "Generalized linear mixed quantile regression with panel data," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    8. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    9. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    10. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    11. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    12. Demetrescu, Matei & Hosseinkouchack, Mehdi & Rodrigues, Paulo M. M., 2023. "Tests of no cross-sectional error dependence in panel quantile regressions," Ruhr Economic Papers 1041, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    14. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    15. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    16. Dimelis, Sophia & Giotopoulos, Ioannis & Louri, Helen, 2015. "Can firms grow without credit?: evidence from the Euro Area, 2005-2011: a quantile panel analysis," LSE Research Online Documents on Economics 61157, London School of Economics and Political Science, LSE Library.
    17. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    18. Inanoglu, Hulusi & Jacobs, Michael, Jr. & Liu, Junrong & Sickles, Robin, 2015. "Analyzing Bank Efficiency: Are "Too-Big-to-Fail" Banks Efficient?," Working Papers 15-016, Rice University, Department of Economics.
    19. Ibrahim Mohamed Ali Ali & Imed Attiaoui & Rabeh Khalfaoui & Aviral Kumar Tiwari, 2022. "The Effect of Urbanization and Industrialization on Income Inequality: An Analysis Based on the Method of Moments Quantile Regression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(1), pages 29-50, May.
    20. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:855-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.