IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v60y2013icp80-89.html
   My bibliography  Save this article

Group variable selection and estimation in the tobit censored response model

Author

Listed:
  • Liu, Xianhui
  • Wang, Zhanfeng
  • Wu, Yaohua

Abstract

The tobit censored response model plays an important role in analyzing the dependent variable with a constraint at a pre-specified point such as 0, and is widely used in econometrics research. For this regression model, there are few studies on variable selection in a group manner. In this paper, we present a group variable selection and estimation method for predefined groups of variables. The proposed method selects variables significantly contributing to the regression model and presents consistent estimates of parameters in the selected groups. The asymptotic properties of the resulting estimates are similar to oracle properties. The performance of our method is evaluated with extensive simulation studies and a real example from a married women’s work hour study.

Suggested Citation

  • Liu, Xianhui & Wang, Zhanfeng & Wu, Yaohua, 2013. "Group variable selection and estimation in the tobit censored response model," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 80-89.
  • Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:80-89
    DOI: 10.1016/j.csda.2012.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003878
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    2. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    3. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    4. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Hao & Wang, Zhanfeng & Wu, Yaohua, 2017. "Tobit regression model with parameters of increasing dimensions," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 1-7.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    3. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    4. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    5. Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
    6. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    7. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    8. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
    9. Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
    10. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    11. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    12. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    13. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    14. Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
    15. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    16. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    17. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    19. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    20. Guo, Xiao & Zhang, Hai & Wang, Yao & Wu, Jiang-Lun, 2015. "Model selection and estimation in high dimensional regression models with group SCAD," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 86-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:80-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.