IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i3p353-367.html
   My bibliography  Save this article

The wavelet scaling approach to forecasting: Verification on a large set of Noisy data

Author

Listed:
  • Joanna Bruzda

Abstract

In the paper, we undertake a detailed empirical verification of wavelet scaling as a forecasting method through its application to a large set of noisy data. The method consists of two steps. In the first, the data are smoothed with the help of wavelet estimators of stochastic signals based on the idea of scaling, and, in the second, an AR(I)MA model is built on the estimated signal. This procedure is compared with some alternative approaches encompassing exponential smoothing, moving average, AR(I)MA and regularized AR models. Special attention is given to the ways of treating boundary regions in the wavelet signal estimation and to the use of biased, weakly biased and unbiased estimators of the wavelet variance. According to a collection of popular forecast accuracy measures, when applied to noisy time series with a high level of noise, wavelet scaling is able to outperform the other forecasting procedures, although this conclusion applies mainly to longer time series and not uniformly across all the examined accuracy measures.

Suggested Citation

  • Joanna Bruzda, 2020. "The wavelet scaling approach to forecasting: Verification on a large set of Noisy data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 353-367, April.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:353-367
    DOI: 10.1002/for.2634
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2634
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Theo Berger, 2016. "Forecasting Based on Decomposed Financial Return Series: A Wavelet Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 419-433, August.
    2. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
    3. Pierre Rostan & Alexandra Rostan, 2018. "The versatility of spectrum analysis for forecasting financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 327-339, April.
    4. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    5. Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
    6. Fryzlewicz, Piotr & van Bellegem, Sébastien & von Sachs, Rainer, 2003. "Forecasting non-stationary time series by wavelet process modelling," LSE Research Online Documents on Economics 25830, London School of Economics and Political Science, LSE Library.
    7. António Rua, 2011. "A wavelet approach for factor‐augmented forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 666-678, November.
    8. Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
    9. Ferbar, Liljana & Creslovnik, David & Mojskerc, Blaz & Rajgelj, Martin, 2009. "Demand forecasting methods in a supply chain: Smoothing and denoising," International Journal of Production Economics, Elsevier, vol. 118(1), pages 49-54, March.
    10. Stephan Schlueter & Carola Deuschle, 2014. "Wavelet-based forecasting of ARIMA time series - an empirical comparison of different methods," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 15(1), pages 107-131.
    11. Viviana Fernandez, 2008. "Traditional versus novel forecasting techniques: how much do we gain?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 637-648.
    12. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    13. H. Wong & Wai-Cheung Ip & Zhongjie Xie & Xueli Lui, 2003. "Modelling and forecasting by wavelets, and the application to exchange rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 537-553.
    14. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    15. Helmut Herwartz & Stephan Schlüter, 2017. "On the Predictive Information of Futures' Prices: A Wavelet‐Based Assessment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 345-356, July.
    16. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    17. Mak Kaboudan, 2005. "Extended Daily Exchange Rates Forecasts Using Wavelet Temporal Resolutions," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 79-107.
    18. Bruzda, Joanna, 2019. "Complex analytic wavelets in the measurement of macroeconomic risks," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    19. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    20. Georgios Sermpinis & Thanos Verousis & Konstantinos Theofilatos, 2016. "Adaptive Evolutionary Neural Networks for Forecasting and Trading without a Data‐Snooping Bias," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(1), pages 1-12, January.
    21. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    22. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens J. Krüger, 2021. "A Wavelet Evaluation of Some Leading Business Cycle Indicators for the German Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(3), pages 293-319, December.
    2. Krüger, Jens J., 2024. "A Wavelet Evaluation of Some Leading Business Cycle Indicators for the German Economy," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 149438, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
    2. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    3. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    4. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    5. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    6. Tiffany Elsten & Mark Rooij, 2022. "SUBiNN: a stacked uni- and bivariate kNN sparse ensemble," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 847-874, December.
    7. Jenny W Sun & Jessica M Franklin & Kathryn Rough & Rishi J Desai & Sonia Hernández-Díaz & Krista F Huybrechts & Brian T Bateman, 2020. "Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    8. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    9. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    10. Schroeders, Ulrich & Watrin, Luc & Wilhelm, Oliver, 2021. "Age-related nuances in knowledge assessment," Intelligence, Elsevier, vol. 85(C).
    11. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    12. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    13. Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
    14. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    15. Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
    16. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    17. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
    18. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    19. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    20. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:353-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.