IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp68-78.html
   My bibliography  Save this article

Bayesian model selection in ordinal quantile regression

Author

Listed:
  • Alhamzawi, Rahim

Abstract

A Bayesian stochastic search variable selection (BSSVS) method is presented for variable selection in quantile regression (QReg) for ordinal models. A Markov Chain Monte Carlo (MCMC) method is adopted to draw the unknown quantities from the full posteriors. Through simulations and analysis of an educational attainment dataset, the performance of the proposed approach is compared with some existing approaches, showing that the proposed approach performs quite good in comparison to some other methods.

Suggested Citation

  • Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:68-78
    DOI: 10.1016/j.csda.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316300937
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
    4. Hong, Hyokyoung Grace & He, Xuming, 2010. "Prediction of Functional Status for the Elderly Based on a New Ordinal Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 930-941.
    5. Rahim Alhamzawi & Keming Yu, 2012. "Variable selection in quantile regression via Gibbs sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 799-813, August.
    6. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    7. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    8. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    9. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    10. David B. Dunson & Natesh Pillai & Ju‐Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183, April.
    11. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    12. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    13. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    14. Gupta, Mayetri & Ibrahim, Joseph G., 2007. "Variable Selection in Regression Mixture Modeling for the Discovery of Gene Regulatory Networks," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 867-880, September.
    15. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    16. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    17. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    18. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    19. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    22. Satkartar K. Kinney & David B. Dunson, 2007. "Fixed and Random Effects Selection in Linear and Logistic Models," Biometrics, The International Biometric Society, vol. 63(3), pages 690-698, September.
    23. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    24. James H. Albert & Siddhartha Chib, 2001. "Sequential Ordinal Modeling with Applications to Survival Data," Biometrics, The International Biometric Society, vol. 57(3), pages 829-836, September.
    25. Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
    26. Hyokyoung Grace Hong & Jianhui Zhou, 2013. "A multi-index model for quantile regression with ordinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1231-1245, June.
    27. Hideo Kozumi & Genya Kobayashi, 2009. "Gibbs Sampling Methods for Bayesian Quantile Regression," Discussion Papers 2009-02, Kobe University, Graduate School of Business Administration.
    28. Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
    29. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    30. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    31. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    32. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    33. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    2. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    3. Fadel Hamid Hadi Alhusseini & Taha al Shaybawee & Fedaa Abd Almajid Sabbar Alaraje, 2017. "Identify Relative importance of covariates in Bayesian lasso quantile regression via new algorithm in statistical program R," Romanian Statistical Review, Romanian Statistical Review, vol. 65(4), pages 99-110, December.
    4. Ivan Jeliazkov & Shubham Karnawat & Mohammad Arshad Rahman & Angela Vossmeyer, 2023. "Flexible Bayesian Quantile Analysis of Residential Rental Rates," Papers 2305.13687, arXiv.org, revised Sep 2023.
    5. Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    2. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    3. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    4. Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
    5. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    6. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    7. Ali Aghamohammadi, 2018. "Bayesian analysis of dynamic panel data by penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 91-108, March.
    8. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    9. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    10. Priya Kedia & Damitri Kundu & Kiranmoy Das, 2023. "A Bayesian variable selection approach to longitudinal quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 149-168, March.
    11. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    12. Feng, Xiang-Nan & Wang, Yifan & Lu, Bin & Song, Xin-Yuan, 2017. "Bayesian regularized quantile structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 234-248.
    13. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    14. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    15. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    16. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
    17. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    18. Dengluan Dai & Anmin Tang & Jinli Ye, 2023. "High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method," Mathematics, MDPI, vol. 11(10), pages 1-22, May.
    19. Shiyi Tu & Min Wang & Xiaoqian Sun, 2017. "Bayesian variable selection and estimation in maximum entropy quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 253-269, January.
    20. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    21. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:68-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.