Adaptive Elastic Net GMM Estimation With Many Invalid Moment Conditions: Simultaneous Model and Moment Selection
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2015.1129344
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Yoonseok Lee & Mehmet Caner & Xu Han, 2015. "Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Center for Policy Research Working Papers 177, Center for Policy Research, Maxwell School, Syracuse University.
References listed on IDEAS
- Maurice J.G. Bun & Frank Kleibergen, 2013. "Identification and inference in moments based analysis of linear dynamic panel data models," UvA-Econometrics Working Papers 13-07, Universiteit van Amsterdam, Dept. of Econometrics.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Eric Gautier & Alexandre Tsybakov, 2011.
"High-Dimensional Instrumental Variables Regression and Confidence Sets,"
Working Papers
2011-13, Center for Research in Economics and Statistics.
- Eric Gautier & Christiern Rose, 2021. "High-dimensional instrumental variables regression and confidence sets," Working Papers hal-00591732, HAL.
- Gautier, Eric & Rose, Christiern & Tsybakov, Alexandre, 2018. "High-dimensional instrumental variables regression and confidence sets," TSE Working Papers 18-930, Toulouse School of Economics (TSE), revised Nov 2019.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- Blundell, Richard & Bond, Stephen, 1998.
"Initial conditions and moment restrictions in dynamic panel data models,"
Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
- R Blundell & Steven Bond, "undated". "Initial conditions and moment restrictions in dynamic panel data model," Economics Papers W14&104., Economics Group, Nuffield College, University of Oxford.
- Blundell, R. & Bond, S., 1995. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," Economics Papers 104, Economics Group, Nuffield College, University of Oxford.
- Richard Blundell & Stephen Bond, 1995. "Initial conditions and moment restrictions in dynamic panel data models," IFS Working Papers W95/17, Institute for Fiscal Studies.
- Donald W. K. Andrews, 1999.
"Consistent Moment Selection Procedures for Generalized Method of Moments Estimation,"
Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
- Donald W.K. Andrews, 1997. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Cowles Foundation Discussion Papers 1146R, Cowles Foundation for Research in Economics, Yale University.
- Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
- Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
- Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
- Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
- Manuel Arellano & Stephen Bond, 1991.
"Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
- Tom Doan, "undated". "RATS program to replicate Arellano-Bond 1991 dynamic panel," Statistical Software Components RTZ00169, Boston College Department of Economics.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tae-Hwy Lee & Tao Wang, 2023.
"Estimation and Testing of Forecast Rationality with Many Moments,"
Papers
2309.09481, arXiv.org.
- Tae-Hwy Lee & Tao Wang, 2023. "Estimation and Testing of Forecast Rationality with Many Moments," Working Papers 202307, University of California at Riverside, Department of Economics.
- de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018.
"Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition,"
CEPR Discussion Papers
12792, C.E.P.R. Discussion Papers.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: Theory and an application to tax competition," CeMMAP working papers 21/23, Institute for Fiscal Studies.
- Imran Rasul & Pedro Souza & Aureo de Paula, 2023. "Identifying Network Ties from Panel Data: Theory and an application to tax competition," POID Working Papers 081, Centre for Economic Performance, LSE.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: theory and an application to tax competition," CeMMAP working papers 02/23, Institute for Fiscal Studies.
- Aureo de Paula & Imran Rasul & Pedro Souza, 2019. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," Papers 1910.07452, arXiv.org, revised Oct 2023.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2019. "Identifying network ties from panel data: theory and an application to tax competition," CeMMAP working papers CWP55/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Áureo de Paula & Imran Rasul & Pedro CL Souza, 2023. "Identifying network ties from panel data: theory and an application to tax competition," IFS Working Papers WCWP21/23, Institute for Fiscal Studies.
- Caner, Mehmet & Fan, Qingliang & Grennes, Thomas, 2021. "Partners in debt: An endogenous non-linear analysis of the effects of public and private debt on growth," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 694-711.
- Chiang, Harold D. & Rodrigue, Joel & Sasaki, Yuya, 2023.
"Post-Selection Inference In Three-Dimensional Panel Data,"
Econometric Theory, Cambridge University Press, vol. 39(3), pages 623-658, June.
- Harold D. Chiang & Joel Rodrigue & Yuya Sasaki, 2019. "Post-Selection Inference in Three-Dimensional Panel Data," Papers 1904.00211, arXiv.org, revised Apr 2019.
- DiTraglia, Francis J., 2016.
"Using invalid instruments on purpose: Focused moment selection and averaging for GMM,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
- Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM," PIER Working Paper Archive 14-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Aug 2014.
- Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
- Marco Battaglini & Forrest W. Crawford & Eleonora Patacchini & Sida Peng, 2020.
"A Graphical Lasso Approach to Estimating Network Connections: The Case of U.S. Lawmakers,"
NBER Working Papers
27557, National Bureau of Economic Research, Inc.
- Battaglini, Marco & Crawford, Forrest & Patacchini, Eleonora & Peng, Sida, 2020. "A Graphical Lasso Approach to Estimating Network Connections: The Case of U.S. Lawmakers," CEPR Discussion Papers 15041, C.E.P.R. Discussion Papers.
- Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
- Belloni, Alexandre & Hansen, Christian & Newey, Whitney, 2022. "High-dimensional linear models with many endogenous variables," Journal of Econometrics, Elsevier, vol. 228(1), pages 4-26.
- Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
- Mehmet Caner, 2021. "A Starting Note: A Historical Perspective in Lasso," International Econometric Review (IER), Econometric Research Association, vol. 13(1), pages 1-3, March.
- Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
- Jinyuan Chang & Zhentao Shi & Jia Zhang, 2021. "Culling the herd of moments with penalized empirical likelihood," Papers 2108.03382, arXiv.org, revised May 2022.
- Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
- Mehmet Caner & Xu Han, 2021.
"An upper bound for functions of estimators in high dimensions,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 1-13, January.
- Mehmet Caner & Xu Han, 2020. "An Upper Bound for Functions of Estimators in High Dimensions," Papers 2008.02636, arXiv.org.
- Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
- Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Lu, Xun & Su, Liangjun, 2016.
"Shrinkage estimation of dynamic panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
- Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
- Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.
- Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023.
"High dimensional semiparametric moment restriction models,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2017. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 17/17, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP69/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," CeMMAP working papers CWP04/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chaohua Dong & Jiti Gao & Oliver Linton, 2018. "High dimensional semiparametric moment restriction models," Monash Econometrics and Business Statistics Working Papers 23/18, Monash University, Department of Econometrics and Business Statistics.
- Dong, C. & Gao, J. & Linton, O., 2018. "High Dimensional Semiparametric Moment Restriction Models," Cambridge Working Papers in Economics 1881, Faculty of Economics, University of Cambridge.
- Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Martinez Josue G. & Carroll Raymond J & Muller Samuel & Sampson Joshua N. & Chatterjee Nilanjan, 2010. "A Note on the Effect on Power of Score Tests via Dimension Reduction by Penalized Regression under the Null," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-14, March.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Emmanuel O. Ogundimu, 2022. "Regularization and variable selection in Heckman selection model," Statistical Papers, Springer, vol. 63(2), pages 421-439, April.
- Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
- Ivan Korolev, 2018. "LM-BIC Model Selection in Semiparametric Models," Papers 1811.10676, arXiv.org.
More about this item
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
- C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:24-46. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.